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ABSTRACT

Competitive neural networks can be used to e�ciently
quantize image and video data. We discuss a novel class
of vector quantizers which perform noise robust data
compression. The vector quantizers are trained to si-
multaneously compensate channel noise and code vec-
tor elimination noise. The training algorithm to esti-
mate code vectors is derived by the maximum entropy
principle in the spirit of deterministic annealing. We
demonstrate the performance of noise robust codebooks
with compression results for a teleconferencing system
on the basis of a wavelet image representation.

1. INTRODUCTION

Vector quantization [6] deals with the problem of en-
coding an information source by means of a �nite size
codebook. If the code optimization is data driven, this
is more speci�cally called adaptive vector quantization.
Adaptive vector quantization possesses important appli-
cations, for example in speech and image compression,
where the code has to be adapted to the statistics of the
data source.

We present a novel approach to the design of opti-
mal noise robust vector quantizers, which not only com-
pactly encode the data, but also compensate channel
noise and random code vector eliminations. Robust vec-
tor quantization is formulated as an optimization prob-
lem, extending the source-channel coding approach pre-
sented in [9, 5]. An e�cient optimization heuristic is
derived within the deterministic annealing framework
[13, 3, 2]. The on-line version of the proposed algo-
rithm is a neural network technique, which belongs to
the class of competitive learning methods. The rigorous
derivation from an optimization principle guarantees an
information{theoretic interpretation of the presented al-
gorithm. This also covers the self{organizing map [8]
and the neural gas [12] as special cases.

2. ROBUST VECTOR QUANTIZATION

Assume a sample set of data vectors X = fxi 2 IRd :
1 � i � Ng is given. Adaptive vector quantization re-
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quires to �nd an optimal codebook Y = fy� 2 IRd : 1 �
� � Kg, with codebook vectors or prototypes y� such
that the distortion induced by the data encoding is min-
imized. It is important to notice the distinction from
computational learning theory, whether the distortion
should be minimized only for the given data, or whether
X is considered as training data to design a codebook
for an on-line data generating source. Once a code-
book Y and a corresponding encoding e : f1; : : : ;Ng !
f1; : : : ;Kg has been speci�ed, each data vector xi is rep-
resented by its code vector ye(i). The index � = e(i) is
transmitted and y� is retrieved on the receiver side by
codebook lookup. The information loss is measured by
a distortion D (xi;y�). The total distortion of encoding
X with Y is given by,

H
vq(e;Y) =

NX
i=1

D
�
xi;ye(i)

�
: (1)

For di�erentiable distortion measures, this results in the
following set of stationary equations,

e(i) = minfarg min
�
D(xi;y� )g; (2)

NX
i=1

�e(i);�
@

@y�
D (xi;y�) = 0: (3)

Eq. (2) is known as the nearest neighbor rule and Eq. (3)
as the centroid condition from rate distortion theory.
Squared Euclidean distortions imply the optimal choice
of the codebook vectors as the center of mass of the
associated data. Starting from Eqs. (2,3) di�erent up-
date schemes for reaching a local minimum are possible
[10], moreover there exists a large number of heuristics
to incrementally split clusters and to deal with unused
codewords, c.f. [6].

An important extension of the vector quantization
problem is to consider a noisy transmission channel in
the codebook design phase. This problem is also known
as source-channel coding. We assume the noise char-
acteristics of the channel to be known and denote by
S�� the probability of receiving index � after sending �
through the channel. It has been noticed [9, 5, 11, 3]
that source-channel coding may result in a topological
ordering of prototypes, since the channel noise breaks



the permutation symmetry of the prototype indices. A
similar mechanism has also been applied in the self-
organizing map [8].
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A second fundamen-
tal extension of the ba-
sic vector quantization
model deals with ran-
dom eliminations of code-
book vectors and is
called robust vector quan-

tization [7]. In this com-
munication model the
codebook design has to
deal with the problem,
that certain prototypes may not be available at en-
coding time t due to a temporary codebook reduction
Y(t) � Y. This might be necessitated by rapidly vary-
ing bandwidth limits, a problem also known as variable{
rate vector quantization. In the biological context the
y� may parameterize synaptic weights of neurons and
eliminations of prototypes correspond to single neuron
defects.

The possibility that only a part of the codebook is
available to the encoder requires to specify a complete
preference list or ranking of codebook vectors. For ev-
ery data vector the ranking ri is a bijective mapping on
f1; : : : ;Kg, representing a total ordering of codebook
vectors. ri(�) = 1; 2; : : : ; K denotes, that y� is the �rst,
second, : : : , K-th choice to encode xi. For the data en-
coding at time t the y� with the lowest rank ri(�) among

the available part Y(t) � Y of the codebook is used to
encode xi. In the case of an independent elimination
noise �� for y�, the objective function for robust vector
quantization is given by

H
rvq(r;Y) =

NX
i=1

KX
�=1

(1� ��)

2
4 Y
�;ri (�)<ri(�)

��

3
5 D

S
i�; (4)

where DS
i� =

PK

�=1 S��D (xi;y�) is the expected dis-
tortion, for encoding xi by index �. Notice, that for a
given codebook the optimal choice for the rank variables
is obtained by sorting DS

i� in ascending order.
In the simpler case without channel noise and with

uniform elimination probabilities �� = �, 8�, the objec-
tive function is essentially equivalent to the neural gas

model, introduced by Martinetz et al. [12].

3. CODEBOOK DESIGN BY

DETERMINISTIC ANNEALING

In this section we apply the optimization framework
called deterministic annealing (DA) for optimal code-
book design. The core of all annealing methods is a
computational temperature T , which controls the am-
plitude of noise, arti�cially introduced in the optimiza-
tion process. At T > 0 the original cost function is
replaced by a new e�ective cost function FT called the

free energy. In DA the free energy is minimized with
respect to Y at every temperature level and the min-
imum is tracked while T is gradually lowered. In the
high temperature regime FT is convex, while we recover
the original cost function in the limit of T ! 0. The
free energy for vector quantization is given by [13],

F
vq
T (Y) = �T

NX
i=1

log
KX
�=1

exp

�
�
1

T
D(xi;y�)

�
: (5)

If D is di�erentiable, the equations which result from
minimizing the free energy are the generalized centroid
conditions with Gibbs probabilities

Pfe(i) = �g =
exp

�
� 1

T
D(xi; y�)

�
P

K

�=1 exp
�
� 1

T
D(xi;y� )

� : (6)

which replace the Kronecker delta functions �e(i);� in
Eq. (3). As can be seen easily, the nearest neighbor rule
is a limiting case of the soft{min function in Eq. (6) for
T ! 0.

For the robust model Hrvq the application of the
maximum entropy framework leads to an additional
problem, which is the calculation of Gibbs averages for
the encoding ranks. To obtain an e�cient algorithm,
we perform a truncated deterministic annealing. The
idea is to apply the maximum entropy principle only to
the lowest rmax rank variables of Hrvq and to calculate
higher ranks at T = 0. We will present the results for
the simplest non{trivial case, rmax = 2.

To facilitate the calculation, we impute the optimal
ranks given indices � and � with ri(�) = 1, ri(�) = 2,
by ordering the remaining indices � 6= �;� with ascend-
ing DS

i�. hi�� denotes the residual costs for encoding
xi, after y� and y� have been eliminated. We obtain
expected distortions

�
i
�� = (1� ��)Di� + (1 � ��)��Di� + ����h

i
�� : (7)

From these we calculate the Gibbs probabilities

Pfri(�)=1^ri(�)=2g=
exp

�
� 1

T
�i��

�
PK

=1

P
�6=exp

�
� 1

T
�i�

� ; (8)

which we abbreviate by pi�� in the sequel. Further de-
note by r�i the optimal ranking. Marginalization allows
us to calculate the encoding probabilities,

Pfe(i) = �g = (1� ��)
KX
�=1

�
p
i
�� + ��p

i
��

�
(9)

+ (1� ��)
X
� 6=�

X
�6=�;�

p
i
������

Y
;r

�
i
()<r�

i
(�)

 6=�;�

�

The received index d(i) to decode xi is a random vari-
able and the decoding probabilities Pfd(i) = �g are the
weights for the centroid conditions in Eq. (3),

Pfd(i) = �g =
KX
�=1

S��Pfe(i) = �g: (10)



Level 1 Level 2 Level 3

dtl x dtl y dtl xy dtl x dtl y dtl xy dtl x dtl y dtl xy

jBlocksj 16 16 - 4 4 16 4 4 4

jCodebookj 64 64 0 128 128 256 256 256 128

mbpp 6/16 6/16 0 7/4 7/4 4/16 8/4 8/4 7/4

Table 1: Block, codebook sizes and maximum bits per
pixel (mbpp) for all wavelet detail images (dtl x,y,xy).

4. COMPETITIVE LEARNING

For many interesting applications, it is more adequate to
consider an on-line setting, where solutions are adapted
sequentially with the presentation of new data. A sys-
tematic way to obtain on-line equations for squared Eu-
clidean distortions is to approximate the di�erence
yN+1
� �yN� between the centroids for N and N+1 data

vectors [3]. The resulting equations are given by

y
N+1
� = y

N
� +

Pfd(N + 1) = �g

pN+1
�

�
xN+1 � y

N
�

�
;(11)

where pN+1
� = pN� + Pfd(N + 1) = �g is a running

average for prototype y�, p
0
� = 1.

On{line update schemes for vector quantization are
closely related to algorithms known as competitive learn-

ing in the neural networks community. Prototypes cor-
respond to neuron weights, which determine the center
of the receptive �eld in the data or stimuli space. If neu-
rons are activated, they get tuned to that speci�c stim-
uli, a relation which is directly represented in Eq. (11),
since the direction of weight changes is always towards
the new stimulus xN+1. Compared to the on{line learn-
ing rules proposed by Kohonen et al. [8] and Martinetz
et al. [12], the learning rate in Eq. (11) is di�erent for
every `neuron', since it depends inversely on the number
of data points assigned so far. This dependency on the
history of a neuron avoids the problem of de�ning an
appropriate global learning rate. To accelerate the con-
vergence rate it might be advantageous to include an
additional learning gain, based on the `Search{Then{
Converge' heuristic [4]. The modi�ed update rules are
obtained by replacing pN+1

� by 1 + pN+1
� =�. For � > 1,

the mobility of the neuron weights y� is increased.

5. RESULTS

We have tested the presented vector quantization algo-
rithm on wavelet-transformed video sequences from a
teleconferencing application. Due to the fact, that se-
vere bandwidth limitations as well as noisy transmission
channels are a typical problem especially for wireless
teleconferencing, this is a realistic scenario for robust
vector quantization. The wavelet transformation and
the grouping scheme of wavelet coe�cients into blocks
is due to [1], with a three-level biorthogonal wavelet
transformation. Data vectors were generated by group-
ing neighboring wavelet coe�cients in blocks of size 4�4
and 2 � 2 for each sub-band separately, c.f. Table 1.

b)

c)

a)

P
S

N
R

frame #

training data test data

31

32

33

34

35

36

37

38

39

0 1 2 3 4 5 6 7 8 9

DA, noisefree
LBG, noisefree

robust DA with noise �

�
�

�

� �
�

�

�
�

�

LBG with noise +

+

+ + +
+ + +

+
+

+

frame #2, robust DA with noise

frame #2, LBG with noise

Figure 1: Batch optimization on the `Miss America'
sequence (354 � 288 pixels). (a) PSNR curve for the
noise{free and noisy case (�� = � = 0:5, bit-noise 1%)
with codebooks trained by LBG and DA. (b),(c) exam-
ple frames for the noisy case.

This results in a multi-resolution codebook with inde-
pendent codebooks for all wavelet detail signals. The
residuum on the third level was not further vector quan-
tized, in practice a predictive coding combined with a
scalar quantization showed the best compression per-
formance. Results for batch optimization are depicted
in Fig. 1. Codebooks designed by DA not only yield
superior results on the training data, but also on new
test data, as compared to the LBG algorithm. The ro-
bust codebook design shows an improvement of approx-
imately 3 dB on both, training and test data. This
means 50% of the PSNR loss due to noise are compen-
sated by the robust design procedure. In the noisefree
case all codebooks obey a signi�cant di�erence of about
2 dB in PSNR between the training and the test error
due to data over�tting, while no over�tting phenomenon
occurs in the presence of noise. Without noise the im-
provement by DA is approximately 0:2 dB.
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Figure 2: On-line learning with and without temper-
ature. (a) PSNR at T > 0 (upper curve) and T = 0
(lower curve), averaged over 20 runs with � = 30 and
an average entropy of 0:5 for the T > 0 experiments.
(b) example frame of `Salesman' sequence.

Results for noisefree on-line learning are depicted
in Fig. 2. The rapidly increasing PSNR curves in (a)
demonstrates a fast adaptation to the statistics of the
source with a �nal quality of about 33:5 dB PSNR.
The experiments with a non{zero temperature T > 0
demonstrate the non{trivial fact, that the introduction



of temperature improves the on{line learning perfor-
mance. We have implemented an on{line temperature
control, which increases or decreases the temperature,
such that a prespeci�ed average entropy is obtained.
Since in on{line learning the distortion is always deter-
mined on new data, this means, that a non{zero tem-
perature yields a better generalization as compared to
the WTA.
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Figure 3: On-line learning with codebook vector elim-
inations on the `Miss America' sequence. (a) PSNR
curves for robust vector quantization with q = 0:685
(upper curve) and � = 0:5 (middle), compared to WTA
(lower curve). (b),(c) example frames for robust encod-
ing with q = 0:685 and WTA, respectively.
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A series of experiments
with elimination noise are
summarized in Fig. 3. The
gain achieved by robust
codebook design is more than 2 dB. We have investi-
gated the full robust model with elimination probabili-
ties which depend on the prototype index �, according
to the depicted scheme. The elimination probabilities
for half of the codebook vectors are high, �� = q, and are
recursively reduced, until a `core codebook' is obtained,
which has zero elimination probability. As opposed to a
uniform elimination probability, this will partially break
the permutation symmetry of codewords. Our experi-
ments clearly indicate that the codebook design can take
advantage of this knowledge if compared to a uniform
elimination model with the same average elimination
probability. This is also a more realistic assumption for
fast on-line rate control, since it is not recommendable to
eliminate codebook vectors completely at random. This
demonstrates the advantage of the exibility of the ro-
bust vector quantization framework in realistic encoding
and transmission situations, taking into account possi-
ble sources of additional uncertainty.

6. CONCLUSION

Robust vector quantization is a lossy data compression
technique which compensates for channel and code vec-

tor elimination noise. We have derived neural network
algorithms with underlying competitive learning
schemes both for batch and on-line learning. The
resulting vector quantizers have proven to yield supe-
rior quantization results compared to standard design
techniques.
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