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ABSTRACT

An extension of a feedforward neural network is presen-
ted. Although utilizing linear threshold functions and a
boolean function in the second layer, signal processing
within the neural network is real. After mapping input
vectors onto a discretization of the input space, real
valued features of the internal representation of pat-
tern are extracted. A vectorquantizer assigns a class
hypothesis to a pattern based on its extracted features
and adequate reference vectors of all classes in the de-
cision space of the output layer. Training consists of
a combination of combinatorial and convex optimiza-
tion. This work has been applied to a standard optical
character recognition task. Results and comparison to
alternative approaches are presented.

1. INTRODUCTION

In [1] an extension of the Madaline Rule I algorithm
of Widrow and Ho� [2] has been presented. The al-
gorithm is related to a two-layer feedforward neural
network consisting of adaptive neurons in the input
layer and a boolean function (majority logic) in the
second layer of the network. Because of the hard li-
miter activation function of the adaptive neurons and
the binary properties of the boolean function there is
no feasible gradient information and backpropagation
like algorithms are not applicable. However in [1] has
been shown that the principle of minimum weight di-
sturbance applied to neural networks is an excellent
alternative to error function approaches.
In this paper we present an extension of the proposed
neural network. Although still utilizing linear thres-
hold units and a boolean function, signal processing
within the neural network is now real, because of the
use of geometrical properties from internal represen-
tation of data. Moreover, embedding the binary de-
cision space of the output layer into real space RJ

makes implementing a vectorquantizer feasible. Figure
1 shows the architecture of the complete system. The
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Figure 1: A feedforward neural network consisting of
J parallel two-layer neural networks and a vectorquan-
tizer. Each neural component shows binary proper-
ties, because of its boolean function Bj(�) in the se-
cond layer. A real valued ouptput vector oj(�) of each
input pattern is extracted. The vectorquantizer assigns
a class Ck to the extracted feature vector of the second
layer based on K reference vectors trefk .

complete training algorithm is given by a sequence of
combined combinatorial and convex optimization pro-
blems. The objective of the training algorithm is a
correct embedding of input pattern x 2 Rn accor-
ding to their desired output target trefx element of a
sphere SJ�1 � RJ . Embedding of pattern stands



for an adjustable mapping of x into the domain of
the boolean functions bj = Bj(�) ; bj 2 f�1;+1g
and is composed, for each network j, by the subse-
quential mapping of x 7! lji = wT

jix into the space
of local �elds lj of all i = 1; : : : ; h hidden neurons
of each input layer j and the hard limiter function
lji 7! pji = sgn(lji) ; pji 2 f�1;+1g . The weight vec-
torwji represents the weighted summation of all inputs
of the neural network. For each subsystem j = 1; : : : ; J ,
elements of pj 2 f�1;+1g

h correspond to convex regi-

ons fx 2 Rn j pji = sgn(wT
jix) ; i = 1; : : : ; hg in the

space of input pattern [2, 3, 4, 5, 6]. These regions are
called cells zj and are indicated by the decimal value of
its binary equivalent, i.e. zj = fpj1pj2 � � � pjhgdec. The
number of cells jZj j � 2h in each neural component is
�nite. Therefore the mapping of the boolean functions
may also be de�ned by means of a lookuptable. Ac-
cording to the internal representation of a pattern, i.e.
euclidian distances to adjacent cells, a real output oj
of each component is extracted. The vectorquantizer's
�nal decision is based on the minimal distance to a refe-
rence vector tref

k element of classes C1; C2; : : : ; CK . In
other words, the �rst layer of the neural network per-
forms a mapping of the input pattern onto elements
zj 2 Zj of a discretization of the input pattern space.
From individual internal representation of pattern, fea-
ture vectors are extracted and a vectorquantizer makes
a decision. This interpretation makes the phrase em-
bedding of pattern more clear. In the following, an
outline of the training algorithm, i.e. the hybrid opti-
mization, of the feedforward neural network is given.
The system has been applied to optical character re-
cognition tasks. Results and comparison to alternative
classi�cation systems are presented.

2. PROVIDING TARGETS FOR

SUPERVISED TRAINING OF THE

NEURAL NETWORK COMPONENTS

The proposed supervised training is sequential, i.e. the
algorithm is iteratively applied to a very restricted num-
ber r = 1; 2; 3; : : : of pattern. This set of relevant samp-
les is randomly drawn from the underlying training set
and exclusively consists of misclassi�ed pattern, i.e.
pattern with incorrect output vector o(x), according
to the input of the vectorquantizer and its given set of
current reference vectors trefk . The objective of provi-
ding targets for the supervised training of the neural
components of the system is to �nd a target

tprov := o(x) + �t (1)

subject to

jjtprov � trefx jj22 < jjtprov � t
ref

k jj22;

where trefx 6= t
ref

k is the valid reference vector of x.
However, in respect to the principle of minimal weight
disturbance in the next section, a convex optimization
problem

min
�t

1

2
�tTC�t (2)

is given, subject to the tesselation of decision space by
the set of reference vectors. The matrix C denotes a
modi�edmetric in target space, because the principle of
minimal weight disturbance is related to weight space
and there are di�erent scales of jj�wjijj2 according to
j�tj j.

3. PRINCIPLE OF MINIMAL WEIGHT

DISTURBANCE FOR EMBEDDING

PATTERN

With the principle of minimal weight disturbanceWidrow
and Ho� left some 
exibilty of possible realizations. In
[1] a minimal weight change �wji of the neurons of the
input layer has been proposed for beeing a criterion of
the embedding of multiple input pattern. For the set
x� ; � = 1; : : : ; r of input pattern, each training step of
the hidden neurons of the �rst layer according to provi-
ded targets is given as the combinatorial optimization
problem

fz�1j ; : : : ; z
�

rjg = arg min
z�j

�=1;:::;r

hX

i=1

jj�w�

jijj
2
2 (3)

subject to oj(x�) = tprov�j , i.e.

Bj(z�j) = sign(tprov�j )

d(x�; ẑ�j) = jt
prov

�j j

and its implicit convex optimization1 for mutual robust
embedding of all vectors x�, r = 1; : : : ; r,

�w�

ji = arg min
�wji

jj�wjijj
2
2 (4)

subject to

pji ��w
T
ji

x�

jjx�jj2
� (jtprov�j j � pji �w

T
ji

x�

jjx�jj2
)

� = 1; : : : ; r;

with pji = fz��jgbin;i of (3) for each j. The constraints

are derived by the claim for maximal robustness jtprov�j j

of embedded pattern, see also [7, 8]. The boolean func-
tion and the distance measure to adjacent cells pro-
vide the real valued output of each neural network by

1only for case of t
prov and t

ref
x beeing elements of equal

hyperrectangles of RJ .



oj(x�) = Bj(z��j) � d(x�; ẑ
�
�j). Whereas the distance

measure d(�) is given by the minimal distance of an
input vector x 2 z in space of local �elds to a cell ẑ
with B(ẑ) 6= B(z).
For reducing the computational complexity, the ori-
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Figure 2: Discretization of the input space R2 with
h = 3 hidden neurons in the input layer. z��j = 5 = f+1
�1 +1gdec represents the cell with minimal distance
d(x�; z��j) to the misclassi�ed input pattern x� with
target sign(tprov�j ) = +1. Note, that distances between
input vectors and cells are measured in the space of
local �elds lji = wT

jix�.

ginal combinatorial search for internal representation
z��j of multiple pattern has been replaced by a sub-
optimal choice of cells z��j for each pattern. There-
fore, the objective function of (3) is rewritten to z��j =

argminz� jj�lj jj
2
2 subject to pji(l�i + �l�i) � jjx�jj2 �

jtprov�j j for Bj(z�) = sign(tprov�j ). Input x� is strictly em-
bedded into cell z��j with minimal distance d(l�j ; z��j)

to the still misclassi�ed vector l�j = wT
jix� in the space

of local �elds, i.e.

z��j = argmin
zj

inf
lj
jjl�j � lj jj

2
2 (5)

subject to

Bj(zj) = sign(tprov�j )

fzjgbin;i � li > 0;

where fzjgbin displays the binary equivalent of pos-

sible cell indices and inflj jjl�j � lj jj
2
2 = d(l�j ; zj) for

\lj 2 zj", see also �gure 2. Thereby the complexity is
dramatically reduced from o(2r�h) to o(r � 2h) in num-
ber of convex optimization problems (4), whereby the
distances d(�) are computed in linear complexity o(h)
of standard vector operations. After calculation (5) of
cells z��j the robust embedding (4) of all input pattern

x� according to z��j is outperformed.
In [8, 9] the relevance of the introduced convex opti-
mization problem to Structural Risc Minimization has
been shown.
The nature of the complete algorithm may be descri-
bed as follows: for the set of input pattern x1; : : : ;xr
and all hidden neurons i = 1; : : : ; h of each subsy-
stem j = 1; : : : ; J �nd an embedding z�1j ; : : : ; z

�
rj with

Bj(z��j) = sign(tprov�j ) and d(x; ẑ��j) = jt
prov
�j j accor-

ding to minimal common costs of jj�wjijj2 of all ad-
aptive neurons and the objective of robust embedding
pji �w

T
ji

x�

jjx�jj2
� jt

prov
�j j.

Due to the random search of misclassi�ed pattern the
training algorithm shows stochastical properties and a
monitoring of the process is important. Therefore, trai-
ning is split into S training epochs. In each training
epoch s = 0; : : : ; S a test of the state of the network is
performed periodically, i.e after a sequence of iteration
steps2 the number �(s) of misclassi�ed pattern within
the training set or a cross-validation set is calculated.
All network parameters of the training sequence are
saved if �(s) has improved.

4. LEARNING VECTOR QUANTIZATION

After each training epoch s an adaptation of the refe-

rence vectors t
ref;(s+1)

k := t
ref;(s)

k +�tref
k for the set of

all classesCk, k = 1; : : : K, is performed. The system of

reference vectors tref;(0)k originally stems from a 1-of-10
winner-takes-all code or any other encoding of multiple
classes in decision space [10]. Various criteria are pos-
sible for adaptation of the reference vectors. Whereas
in [11] a Fisher criterion is used for an unsupervised
type of learning vector quantization, this work prefers
an error criterion �, i.e. the total number of misclassi-
�ed pattern within the training set. The optimization
problem is given by

f�trefk g = arg min
�tk

k=1;:::;K

�(t
ref;(s)

k +�tk) (6)

subject to

t
ref;(s)

k +�tk 2 SJ�1

k = 1; : : : ;K;

i.e. minimizing the total number of misclassi�ed vec-
tors within the set of training pattern by means of a �-
nal adaptation of the reference vectors trefk on a sphere,
after each training epoch. For �nding local extrema a
newton based approach is applied. Gradients of @�=@tk
are calculated numerically.

2each step consists of optimization problems (2) - (4).



5. OPTICAL CHARACTER RECOGNITION

This work has been applied to an optical character
recognition task. Recognition of handwritten digits
0 � 9. The results are related to mixtures of NIST-
Training and NIST-Test databases called MNIST, see
also [12]. After a generalized Hough-Transformation
for feature extraction [13], the feedforward neural net-
work was trained. For each class 0; : : : ; 9, i.e. J = K,
networks consist of h = 3 hidden neurons, each neuron
fully connected with 194 inputs of extracted features,
i.e. networks of the �rst layer have 5850 = 10 � 195
free parameters (bias of each neuron included). The
number of training and test pattern is equal to [12]. Fi-
gure 3 presents a comparison of di�erent classi�er me-
thods, partly published in [12, 8]. For rejection of 3:6%
input pattern the misclassi�cation error of the presen-
ted classi�er lies about 0:5%. Note, that the network
only requires 3 � 10 dot-products in the hidden layer
for classi�cation of a single character, whereas SVM
requires more than 1000 � 10 dot-products [8]. The
higher computational costs of LeNet classi�ers in com-
parison with fully connected nets has been reported in
[12].

8.4 %

2.4 %
1.7 % 1.5 % 1.1 % 1.1 %

NN3 SVMLIN LeNet1 LeNet4NWS
Figure 3: Comparision of the presented feedforward
neural network (NWS) with a linear classi�er (LIN),
3-nearest neighbor classi�er (NN3), multilayer neural
network (LeNet1,LeNet4) and a support vector ma-
chine (SVM).

6. CONCLUSION

In this paper a minimum weight disturbance principle
for supervised training of feedforward neural networks
has been presented. Additionally, the competitive rele-
vance of feedforward neural networks based on hard li-
miter activation functions, combined with vectorquan-
tization methods and without access to gradient based
learning algorithms for the neural components has been
demonstrated.
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