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ABSTRACT

We propose a new machine learning paradigm called Mul-
tilayer Graph Transformer Network that extends the ap-
plicability of gradient-based learning algorithms to systems
composed of modules that take graphs as input and pro-
duce graphs as output. A complete check reading sys-
tem based on this concept is described. The system com-
bines convolutional neural network character recognizers
with graph-based stochastic models trained cooperatively at
the document level. It is deployed commercially and reads
million of business and personal checks per month with re-
cord accuracy.

1. INTRODUCTION

The most common technique for building document pro-
cessing systems is to partition the task into manageable sub-
tasks, such as �eld detection, word segmentation, or char-
acter recognition, and to build a separate module for each
one. Typically, each module is trained, or manually op-
timized, outside of its context. After the complete system
is assembled, a subset of the parameters of the modules
is manually adjusted to maximize the overall performance.
This last step is extremely tedious, time-consuming, and
often suboptimal.
The recent history of Automatic Speech Recognition is

here to remind us that training a recognizer by optimizing
a global criterion (at the word or sentence level) is much
preferable to merely training it on hand-segmented phon-
emes or other units. Several recent works have shown that
the same is true for handwriting recognition [2, 5]: optim-
izing a word-level criterion is preferable to solely training a
recognizer on pre-segmented characters because the recog-
nizer can learn not only to recognize individual characters,
but also to reject mis-segmented characters thereby minim-
izing the overall word error.
Let us consider a document analysis system whose per-

formance on a given data set is measured by an objective
function E (for example, a \soft" version of the classi�c-
ation error) that depends upon a large vector of tunable
parameters W . The goal of training is to �nd the para-
meter vector that minimizes E(W ). Common wisdom sug-
gests that this problem is intractable for most realistic cases
since the minimization might be essentially combinatorial.
However, if E(W ) can be made di�erentiable with respect
to W , we can �nd its minimum using simple gradient-based
techniques such as stochastic gradient descent or conjugate
gradient. To ensure that E(W ) is di�erentiable we can build
the overall system as a feed-forward network of di�erentiable
modules. The function implemented by each module must
be di�erentiable almost everywherewith respect the internal
parameters of the module, and with respect to the module's
inputs. If this is the case, a simple generalization of the well-
known gradient back-propagation procedure, widely used
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Figure 1. (a) Traditional Neural Networks communic-
ate �xed-size vectors between layer. (b) Convolutional
Neural Networks and Recurrent Neural Networks can handle
variable-length sequences of vectors. (c) Multilayer Graph
Transformer Networks are composed of trainable modules
that operate on and produce graphs whose arcs carry nu-
merical information.

for multilayer neural net training, can be used to e�ciently
compute the gradients of the objective function with respect
to all the parameters in the system [3]. For example, let us
consider a system built as a cascade of modules, each of
which implements a function Xn = Fn(Wn;Xn�1), where
Xn is a vector representing the output of the module, Wn

is the vector of tunable parameters in the module (a subset
of W ), and Xn�1 is the module's input vector (as well as
the previous module's output vector). If we assume that
the partial derivative of E with respect to Xn is known, the
partial derivatives of E with respect to Wn and Xn�1 can
be computed using

@E=@Wn = @F=@W (Wn;Xn�1)@E=@Xn

@E=@Xn�1 = @F=@X(Wn;Xn�1)@E=@Xn

where @F=@W (Wn;Xn�1) is the Jacobian of F with re-
spect to W evaluated at the point (Wn; Xn�1), and
@F=@X(Wn;Xn�1) is the Jacobian of F with respect to
X. Using the above equation, we can compute the complete
gradient of E(W ) working our way backwards from the out-
put to the input as in the traditional back-propagation pro-
cedure.

2. GRADIENT-BASED LEARNING IN LARGE
HETEROGENEOUS SYSTEMS

Traditional multilayer neural networks can be viewed as cas-
cades of trainable modules (the layers) that communicate
their states and gradients in the form of �xed-size vectors.
Such representations lack exibility for many applications
that deal with variable length inputs, notably speech and
handwriting recognition. Convolutional network architec-
tures such as Time Delay Neural Networks (TDNN), Space



Displacement Neural Networks (SDNN) [2, 5], or recurrent
networks, have been proposed to deal with variable-length
sequences of vectors, and have been applied with success to
optical character recognition, on-line handwriting recogni-
tion, spoken word recognition, and time-series prediction.
However, these architectures still lack exibility for tasks
in which the state used to encode probability distributions
over sequences of vectors (e.g. stochastic grammars). In
such cases, the data is best represented using a directed
graph in which each arc contains a vector. Each path in
the graph represents a di�erent sequence of vectors. Distri-
butions over sequences can be represented by interpreting
parts of the data associated with each arc as a penalty or
likelihood.
One of the main points of the paper is to show that the

gradient-based training procedure described in the previous
section is not limited to networks simple modules that com-
municate through �xed-size vectors, but can be generalized
to networks of modules called graph transformers that com-
municate their states and gradients in the form of directed
graphs whose arcs carry numerical information (scalars or
vectors). Graph transformers take one or more graphs as
input and constructs a graph on its output (see �gure 1).
A back-propagation phase takes gradients with respect to
the numerical information in the output graph, and com-
putes gradients with respect to the numerical information
attached to the input graphs, and with respect to the mod-
ule's internal parameters. Gradient-based learning can be
performed as long as di�erentiable functions are used to
produce the numerical data in the output graph from the
numerical data in the input graph, and from the functions
parameters. We show that complete, trainable, document
processing systems can be built within that framework. This
is demonstrated with a practical system for reading bank
checks. The core of the system is a universal character re-
cognition module based on Convolutional Neural Networks.
The check reading system is commercially deployed, reading
several million handwritten and machine printed checks per
month with record accuracy.

3. GRAPH TRANSFORMER NETWORKS

To help make the concept of graph transformer network con-
crete, we will describe an oversimpli�ed example of trainable
system built from three graph transformers in the context
of handwriting recognition. The task of the system is to �nd
the best segmentation of a handwritten word into characters
(see �gure 2). A word image is �rst cut into \pieces of ink"
using heuristic image processing techniques (such as con-
nected components, vertical projections,...). Each piece of
ink may be a whole character or a piece of character. The
bottom of �gure 2 shows an example of a three-character
word cut into four pieces of ink. A so-called segmenta-
tion graph Gseg is built to represent all the possible group-
ings of pieces of ink into characters. Each arc is associated
with one piece of ink or with a combination of successive
pieces (called a segment), such that each path in the graph
goes once and only once through each piece of ink. To
each path corresponds a di�erent grouping of the pieces of
ink into characters. A �rst graph transformer Trec, which
we will call the recognition transformer, creates its output
graph Grec by replicating the segmentation graph, replacing
the segments by a positive penalty term that indicates how
good a character the segment is. If the segment is a good-
looking character, the penalty is small (close to 0), if it is
an incomplete or bad-looking character, the penalty is lar-
ger. These numbers can be seen as negative log-likelihoods,
or distances. They are generated from the segment images
through a character scorer function Rw, parameterized by
a vector w (e.g. a neural network with weight vector w).
The cumulated penalty over a path in Grec is a measure of
badness of the corresponding segmentation. A second trans-
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Figure 2. A simple example of graph transformer machine
that �nds the best segmentation of a handwritten word.

former Tvit, called a Viterbi transformer, takes this graph as
input and produces a trivial graph Gvit whose only path is
the lowest-penalty path in the segmentation graph. A third
transformer Tcost takes Gvit and outputs a single number:
the cumulated penalty C of Gvit. These three transformers
are very special cases. Trec changes the content of the arcs
but not the structure of the graph. Tvit changes the graph
structure, but it simply duplicates a subset of the arcs on
its output without changing their content. Tcost outputs
a single number. More complex transformers will be de-
scribed in the main part of the paper.

3.1. Backpropagation in Graph Transformer Net-
works

Backpropagating gradients through the above system is very
simple. We assume that the system is part of larger sys-
tem whose training minimizes an objective function E. For
each variable x used the forward pass (arc penalties, char-
acter scorer parameters....), the backpropagation phase will
compute a corresponding partial derivative @E=@x. We as-
sume that @E=@C , the gradient of E with respect to C, the
cumulated penalty over the best path, is known. Since C
is simply the sum of the penalties of each arc in Gvit, the
gradients of E with respect to these penalties are all equal
to @E=@C . Since Gvit is a subset of Grec, the derivatives of
E with respect to the penalties in Grec are equal to @E=@C
for those arcs that appear in Gvit, and 0 for all others. The
gradient of E with respect to w, the parameter vector of the
character scorer Rw in Trec, is simply the sum over all arcs
in Trec of @E=@C@R=@w. We have done nothing more than
apply the chain rule, and the resulting algorithm is noth-
ing more than a gradient-based version of the well-known
Viterbi training procedure. We can view the above pro-
cess as backpropagating gradients through an architecture
whose dataow graph changes with the input data. This is
in contrast with traditional neural nets whose architecture
is �xed. Now that we have explained the concept in a fa-
miliar situation, we will generalize the idea, and apply it to
a practical case.

3.2. Previous Work

Numerous authors in speech recognition have used gradient-
based training methods that integrate graph-based statist-
ical models (notably HMM) with acoustic recognition mod-
ules, mainly gaussian mixture models, but also neural net-



works [4]. Similar ideas have been applied to handwrit-
ing recognition [2]. However, there has been no proposal
for a systematic approach to multilayer graph-based train-
able systems. The idea of transforming graphs into other
graphs is at the basis of the concept of weighted �nite-state
transducers [7], but little e�ort has been devoted to building
globally trainable systems out of transducers. The concept
of building trainable systems by assembling modules and
propagating gradients through them has been proposed for
quite some time [3], and used extensively in practical sys-
tems [2]. However, it was not suggested that complex data
structures such as graphs could be systematically used as
state variables between modules. A di�erent approach to
graph-based trainable systems, called Input-Output HMM,
was proposed in [1].

4. READING CHECK AMOUNTS WITH A
GRAPH TRANSFORMER NETWORK

4.1. A Graph Transformer Network

The idea of graph transformer networks was used to build a
check amount reading system. We now describe the success-
ive graph transformation modules that allow our system to
read the check amount. Each Graph Transformer produces a
graph whose paths encode and score the current hypotheses
considered at this stage of the system. All the functions
used throughout the system to compute arc penalties are
di�erentiable and possibly contain trainable parameters.
The input to the system a trivial graph with a single arc

that carries the image of the whole check.
The �eld location transformer Tfield �rst performs

classical image analysis (including connected components,
ink density histograms, etc...) and heuristically extracts
rectangular zones that may contain the check amount. Tfield
produces an output graph, called the �eld graph such that
each candidate zone found is associated with one arc that
links the start node to the end node. Each arc contains
the image of the zone, and a penalty term computed from
simple features extracted from the zone (absolute position,
size, aspect ratio,...).
The segmentation transformer Tseg, is similar to the

one described in section 3.. It examines each zone contained
in the �eld graph, generates a segmentation graph from it,
setting preliminary arc penalties using geometrical heurist-
ics. The preliminary penalty for a particular segmentation
of a particular �eld is the sum of the arc penalties along the
corresponding path.
The recognition transformer Trec iterates over all seg-

ment arcs in the segmentation graph and runs a charac-
ter recognizer on the corresponding segment image. In our
case, the recognizer is a Convolutional Neural Network [6]
described in more detail in section 6., whose weights consti-
tute the largest and most important set of tunable paramet-
ers. The recognizer classi�es segment images into one of 95
classes (full printable ASCII set) plus a \junk" class for un-
known symbols or badly-formed characters. Each arc in the
input graph is replaced by 96 arcs in the output graph. Each
of those 96 arcs contains the label of one the classes, and a
penalty that is the sum of the penalty of the corresponding
arc in the input graph and the penalty associated with clas-
sifying the image in the corresponding class, as computed
by the recognizer. Each path in this graph represents a pos-
sible character string for a �eld. This sequence of characters
may or may not be a valid check amount.
The grammar transformer Tgram selects the paths

of the recognition graph that represent valid character se-
quences for check amounts. This transformer takes two
graphs as input: the recognition graph, and the grammar
graph that encodes all possible well-formed amounts. The
output of the grammar transformer, called the interpretation
graph, contains all the paths in the recognition graph that

are compatible with the grammar. The operation that com-
bines the two input graphs to produce the output is called a
graph composition (see [7] for a formal de�nition). To gen-
erate the interpretation graph we place a token on the start
node of the recognition graph and a token on the start node
of the grammar graph. We can simultaneously advance the
two tokens along two arcs if the numerical information on
the two arcs match according to a matching function. In our
case, the matching function simply checks that the class la-
bels on the two arcs are identical. When the two tokens are
moved, an arc in the output graph is created. The output
arc receives the class label of the two arcs, and a penalty
that is simply the sum of the penalties of the originating
arcs. The Viterbi transformer �nally selects the path
with the lowest accumulated penalty, corresponding to the
best grammatically correct interpretations.
If a probabilistic score is desired, we can obtain one by

computing the ratio between (a) the negative exponential
of the total penalty of best path, and (b) the sum of the
negative exponentials of the penalties of all the paths. The
denominator is easily computed using the classical forward
algorithm. We can directly compute its logarithm by pro-
ceeding forward in the graph and setting the penalty of each
node to the logsum of the penalties of the incoming arcs ad-
ded with the penalties of the upstream nodes. The pen-
alty of the end node can be interpreted as the negative log-
likelihood that the check contains a grammatically correct
amount.

5. GRADIENT-BASED LEARNING

Each stage of this check reading system contains tunable
parameters. While some of these parameters could be manu-
ally adjusted, for example the parameters of the �eld locator
and segmentor, the vast majority of them must be learned,
particularly the weights of the neural-net recognizer. Prior
to globally optimizing the system, the parameters of the the
�eld locator and the segmentor are initialized by hand, while
the parameters of the neural net character recognizer are
initially trained on a database of pre-segmented and labeled
characters. Then, the entire system is trained globally from
whole check images labeled with the correct amount. No
explicit segmentation of the amounts is needed to train the
system: it is trained at the check level.
The objective function E minimized by our global train-

ing procedure is a discriminant criterion similar to the
Maximum Mutual Information criterion sometimes used in
speech recognition systems. This criterion is the di�erence
between the accumulated penalty of the correct answer, and
the negative log-likelihood for the full grammar, as com-
puted by the forward algorithm described above. For the
training phase, we therefore pass the interpretation graph
through two grammar transformers, one with a grammar
that only contains the correct answer, and one with the
normal grammar, that output the corresponding negative
log-likelihoods, the di�erence of which is E. The partial de-
rivatives of E with respect to the arc penalties in the inter-
pretation graph are simply computed by backpropagation.
Since all the penalties throughout the system are computed
with di�erentiable function from the penalties or numerical
data at previous layers, we can easily backpropagate partial
derivatives of E with respect to all the penalties and all the
parameters. In doing so, we do nothing more than apply the
chain rule, albeit to a somewhat complicated function.

6. SHAPE RECOGNITION WITH
CONVOLUTIONAL NEURAL NETWORKS

The recognizer used in the Check Reading System is a con-
volutional neural network coined LeNet5. Convolutional
neural nets are speci�cally designed to recognize 2D shapes
with a high degree of invariance with respect to translations,
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Figure 3. Architecture of LeNet 5. Each plane is a feature
map, i.e. a set of units whose weights are constrained to be
identical.

scaling, skewing, and other distortions (see [5] for a review).
They can directly accept images with no other preprocessing
than approximate size normalization and centering. They
have had numerous applications particularly in handwriting
recognition. The architecture of LeNet5 is shown in �gure 3.
In a convolutional net, each unit takes its input from a local
\receptive �eld" in the previous layer, forcing it to extract a
local feature. Units located at di�erent places on the image
are grouped in planes, called feature maps, within which
units are constrained to share a single set of weights. This
makes the operation performed by a feature map shift invari-
ant, and equivalent to a convolution followed by squashing
functions. This weight-sharing technique greatly reduces
the number of free parameters, thereby minimizing the ne-
cessary amount of training samples. A layer is composed of
multiple feature maps, that share di�erent sets of weights,
and extract di�erent types of features.
Complete networks are composed of multiple convolu-

tional layers, extracting features of increasing complexity
and abstraction. Reduced sensitivity to shifts and distor-
tions is built into the system by inserting subsampling layers
between the convolution layers. This forces the higher lay-
ers to extract progressively more global, and less position-
sensitive features. It is important to stress again that all the
weights in such a network are trained by gradient descent,
none of the extracted features are hand-designed. The train-
ing process causes convolutional networks to automatically
synthesize relevant features. Computing the gradient is done
with a slightly modi�ed version of the classical backpropaga-
tion procedure. LeNet5 has 401,000 connections, but only
about 90,000 free parameters because of the weight sharing.

7. RESULTS

A version of the above system was implemented and tested
on a representative mixture of business checks (mostly ma-
chine printed) and personal checks (mostly handwritten).
The neural network classi�er was initally trained on 500,000
images of character images from various origins spanning
the entire printable ASCII set. This contained both hand-
written and machine-printed characters that had been pre-
viously size normalized at the string level. Additional im-
ages were generated by randomly distorting the original im-
ages using simple a�ne transformations of the images. The
network was then further trained on character images that
had been automatically segmented from check images and
manually truthed. The network was also trained to reject
non-characters that resulted from segmentation errors. The
recognizer was then inserted in the check reading system
and trained globally (at the �eld level) on check images.
The performance of the system at the check level is 1%

error, 50% correct, and 49% rejected, which places it above
the threshold of economic viability. The test set is di�erent
from the training set and composed of a \natural" mixture
of business checks and personal checks. On business checks,
which are generally machine-printed, the amount is relat-
ively easy to read, but quite di�cult to �nd due to the lack
of standard for business check layout. On the other hand,
the amount on personal checks is easy to �nd but much
harder to read. The use of a grammar for check amounts

seem particularly helpful for reading business checks.
Independent test by systems integrators have shown the

superiority of this system over several commercially avail-
able systems. The system was integrated in NCR's latest
line of back-o�ce check reading machines. It was �elded
in a bank on June 1996, and has been reading millions of
checks per month since then.

8. CONCLUSION

We have presented a new architecture for trainable sys-
tems that signi�cantly extends the domain of applications
of gradient-based learning. We have shown that all the
steps of a document analysis system can be formulated as
graph transformers through which gradients can be back-
propagated. Even in the non-trainable parts of the sys-
tem, the design philosophy in terms of graph transformation
provides a clear separation between domain-speci�c heurist-
ics and generic, procedural knowledge (the graph transform-
ation paradigm). A Check Reading System, based on these
ideas was built and commercially deployed.
Although this paper presents a small number of examples

of trainable graph transformer modules, it is clear that the
concept can be applied to many situations where the do-
main knowledge or the state information can be represented
by graphs. This is the case in many audio signal recogni-
tion tasks, and visual scene analysis applications. Future
work will attempt to apply graph transformer networks to
such problems, with the hope of allowing more reliance on
automatic learning, and less on detailed engineering.
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