
A NEURO-DYNAMIC PROGRAMMING APPROACH TO ADMISSION

CONTROL IN ATM NETWORKS: THE SINGLE LINK CASE

Peter Marbach and John N. Tsitsiklis

Laboratory for Information and Decision Systems, MIT
Cambridge, MA 02139, USA

ABSTRACT

We are interested in solving large-scale Markov Decision
Problems. The classical method of Dynamic Programming
provides a mathematical framework for �nding optimal solu-
tions for a given Markov Decision Problem. However, for
Dynamic Programming algorithms become computationally
infeasible when the underlying Markov Decision Problem
evolves over a large state space. In recent years, a new meth-
odology, called Neuro-Dynamic Programming, has emerged
which tries to overcome this \curse of dimensionality". We
present how Neuro-Dynamic Programming can be applied
to the Admission Control Problem for a single link in an
ATM environment. Based on results obtained through Neuro-
Dynamic Programming, we derive a heuristic \Threshold"
policy. Performances of the policies obtained through Neuro-
Dynamic Programming are compared with a policy which
always accepts a customer when the required resources are
available.

1. INTRODUCTION

Markov Decision Problems have been a popular paradigm
for sequential decision making under uncertainty. Dynamic
Programming [1] provides a framework for studying such
problems, as well as algorithms for computing optimal de-
cision policies. Unfortunately, these algorithm become com-
putationally infeasible for Markov Decision Problems which
evolve over a large state space. This so called \curse of
dimensionality" renders the classical methods of Dynamic
Programming inapplicable to most realistic problems.

In recent years, the new methodology Neuro-Dynamic
Programming [2] has emerged. Neuro-Dynamic Program-
ming tries to overcome the curse of dimensionality by em-
ploying stochastic approximation algorithms and functional
approximation techniques such as neural networks. The
outcome is a methodology for approximating Dynamic Pro-
gramming solutions in a computationally feasible manner.

Over the past few years, methods of Neuro-Dynamic
Programming have been applied successfully to challenging
problems. Examples include a program that implements a
Backgammon player [3], an elevator dispatcher [4], a job
scheduling problem [5] and control policy for admission
control in wireless communication networks [6]. Although
methods of Neuro-Dynamic Programming have been suc-
cessfully applied to challenging problem, most algorithms

This research was supported by a contract with Siemens AG,

Germany.

proposed in the �eld are not well understood at a theor-
etical level. Nevertheless, the potential of these methods
for solving systematically large-scale Markov Decision Prob-
lems and the successful experimental work in the �eld has
drawn considerable attention.

In this paper, we illustrate the ideas and methods of
Neuro-Dynamic Programming using the example of Admis-
sion Control in an ATM network. In particular, we consider
a single communication link with a given bandwidth.

The paper is structured as follows: after stating the ad-
mission control problem precisely in section 2, we will in
section 3 solve it formally using the classical method of Dy-
namic Programming. Section 4 introduces the TD(0) al-
gorithm of Neuro-Dynamic Programming. In section 5, we
present experimental results.

2. ADMISSION CONTROL

In this section, we formulate more precisely the Admission
Control Problem for a single link.

We are given a single communication link with a total
bandwidth of B units. We intend to support a �nite set
of customer classes f1; 2; ::;Ng. Customers of the di�er-
ent classes request connections over the communication link
according to independent Poisson Processes. The Poisson
Process associated with customer class n is charaterized by
the arrival rate parameter �(n). Once accepted, a customer
of class n seizes b(n) units of bandwidth for t units of time,
where t is exponentially distributed with parameter �(n),
independently of everything else in the system.

One possible way of executing admission control would
be to always accept a customer if the required bandwidth
b(n) is available, and otherwise to reject it. A more soph-
isticated way is to reject a customer even when there is
enough free bandwidth available. One may do this in order
to reserve some bandwidth for customers of a class which is
considered to be especially important. To capture this idea,
we associate a reward c(n) with a customer of class n, i.e.
whenever we accept a customer of the class n, we receive
a reward of c(n) units. Our objective is to maximize the
discounted long term reward.

3. MARKOV DECISION PROBLEMS AND

DYNAMIC PROGRAMMING

In this section, we formulate the Admission Control Prob-
lem for a single link as an in�nite horizon, discounted Markov
Decision Problem [1].

We describe the state of the communication link by an
N-tuple s = (s(1); :::; s(N)), where s(n) denotes the number
of customers of class n currently using the link. The set of
all possible states, i.e. the state space S, is given as follows:

S =

(
s 2 R

N

�����
NX
n=1

s(n)b(n) � B; s(n) 2 f0; 1; 2; :::g

)

where b(n) is the bandwidth demand of a customer of class n
and B is the total available bandwidth of the communication
link. Let st denote the state of the system at time t 2
[0;+1).

A control action u = (u(1); :::; u(N)) is a N-tuple such
that u(n) equals either 0 or 1. Given a control action u, we
accept a new connection request of a customer of class n, if
u(n) equals 1 and reject a new customer of class n otherwise.
Let U denote the set of all possible control actions:

U =
�
u
�� u 2 f0; 1gN

	
We say that an event occurred in the system at time t if at
time t a customer departs from the system or a new customer
requires a connection over the communication link. Let tk
be the time when the kth event takes place. By convention,
we start the system at time t0 = 0; t1 is the time when
the �rst event occurs. We indentify an event by the N-
tuple ! = (!(1); :::;!(N)) where !(n) equals 1 if a new
customer of class n requests a connection; !(n) equals �1
if a customer of class n departs from the system and !(n)
equals 0 otherwise. Let
 denote the sets of all possible
events:

 =

(
!

����� ! 2 f�1; 0; 1gN ;

NX
n=1

j!(n)j = 1

)

Let sk be the state of the system in the interval [tk; tk+1).
Note that if the system is in the state sk, the probability
that the next event will be a speci�c event ! is determined
by the arrival rates �(n) and the departure rates �(n).

Given a state s 2 S, an event ! 2
 and a control
action u 2 U , the next state s0 is given by a function f :
S �
 � U ! S such that if s0 equals f(s;!; u), then the
following holds:

s
0(n) =

8>><
>>:

s(n) if !(n) = 0
s(n) if !(n) = 1 and u(n) = 0
s(n) + 1 if !(n) = 1 and u(n) = 1
s(n)� 1 if !(n) = �1 and s(n) > 0
s(n) if !(n) = �1 and s(n) = 0

We can associate a one stage reward g(s; !; u) with a state
s, an event ! and a control action u which is given by the
formula:

g(s; !; u) =

�
c(n) if !(n) = 1 and u(n) = 1
0 otherwise

where c(n) is the reward associated with the customer class
n.

A stationary policy is a function � : S ! U such that for
every element s in S and every event ! in
, f(s;!; �(s))
is again a state in the state space S. Note that a stationary

policy � induces a Markov Process on the state space S. Let
M denote the set of all possible policies.

With a stationary policy � and a state s we associate
the discounted reward-to-go J�(s):

J�(s) = E

"
1X
k=0

e
��tk+1g(sk; !k+1; �(sk)) js0 = s

#

where the following condition is satis�ed:

sk+1 = f(sk; !k+1; �(sk))

and where � is a positive real number, called the discount
rate.

Our goal is to maximize J�(s) simultaneously for all
states s. Let �� be a stationary policy such that

J��(s) � J�(s) for all s 2 S and all � 2M

then we call �� an optimal policy.
Discounted, continuous-time Markov Decision Problems

can be transformed into discrete time, discounted Markov
Decision Problems by a technique called uniformization [1].
By doing that, the discount rate � gets translated into a
discount factor � 2 [0; 1). Furthermore in our case, we also
have to expand the set of all possible events to the set
0:

0 =

(
!

�����! 2 f�1; 0; 1gN ;
NX
n=1

j!nj � 1

)

Note that we add to the set
 the event (0; 0; :::;0) which
corresponds to a self transition. For every stationary policy
� the following holds:

s = f(s; (0; 0; :::;0); �(s))

Once we have transformed the continuous time Markov De-
cision Problem into a discrete time Markov Decision Prob-
lem, we can formulate the reward-to-go J�(s) for a station-
ary policy � as:

J�(s) = E

"
1X
k=0

�
k+1

g(sk ; !k+1; �(sk))js0 = s

#

We can also think of the reward-to-go for a stationary policy
� as a function J� : S ! R. It is well known that the
reward-to-go function for the optimal policy �� satis�es Bell-
man's equation1 :

J�� (s) = �E [g(s; !; ��(s)) + J�� (s;!; �
�
(s))]

It is well known that Bellman's equation has an unique solu-
tion J�, called the optimal reward-to-go function.

Given a function J : S ! R, we de�ne the greedy policy
of J to be the policy � which has the following properties:

�(s) = argmax
u2U

�E [g(s; !; u) + J(f(s;!; u))]

1Note that in the Admission Control Problem, one stage re-

wards associated with state sk are discounted. Therefore, Bell-

man's equation di�ers in our case from the usual form J�� (s) =

E
�
g(s;!; ��(s)) + �J��(s; !; �

�(s))
�

It is well known that the greedy policy of the optimal reward-
to-go function J� is an optimal policy. Note that knowledge
of the optimal reward-to-go function J� allows to derive an
optimal policy ��.

In principle, an optimal policy can be found using the
classical methods of Dynamic Programming. However this
requires the computation and storage of J�(s) for every state
s in the state space S. Note that the cardinality of the state
space increases exponentially with the number of customer
classes. Therefore, for Admission Control Problems which
involve a large number of customer classes, using methods
of Dynamic Programming is not feasible.

4. NEURO-DYNAMIC PROGRAMMING

Instead of computing the reward-to-go for every state s 2 S,
Neuro-Dynamic Programming uses a compact representa-
tion ~J(�; r) to approximate J�. In particular, we approxim-

ate J�(s) by a suitable approximation architecture ~J(s; r),
where r is a vector of parameters, and approximate an op-
timal policy �� by the greedy policy of ~J(:; r). Typically,

a functional approximation ~J(:; r) is obtained by using a
neural network. The motivation behind Neuro-Dynamic is
the hope that if the functional approximation ~J(:; r) is, in
some sense, close to the optimal reward-to-go function J�,
then the greedy control policy induced by ~J(:; r) is, in some
sense, close to an optimal control policy ��.

In the remainder of this section, we describe the al-
gorithm TD(0) which we used to �nd a functional approx-
imation of J�. The TD(0) algorithm belongs to the class of
Temporal Di�erence algorithms [7]. Temporal Di�erence
algorithms, often re�ered to as TD(�) algorithms, are the
most widely used algorithms in Neuro-Dynamic Program-
ming. The TD(0) algorithm is a simulation based algorithm
which updates the parameter vector r at every step of the
simulation. Starting with an initial parameter vector r0,
TD(0) generates a sequence of parameter vectors rk. At

a simulation step t, the compact representation ~J(:; rk) is
used as an approximation of J� and the greedy policy of
~J(:; rk) is used as an approximation of ��.

Let ~J : S �RK ! R be a family of compact represent-
ations such that rr

~J(s; r) exists for every state s 2 S and
every parameter vector r 2 RK. Choose an initial value of
the parameter vector r0 2 RK and an initial state s0 2 S.
We generate the sequence rk by the following recursive pro-
cedure:

1. Assume we are given state sk and parameter vector
rk; obtain the event !k+1 by a simulation step of the
system.

2. Choose control action uk 2 U such that, for each n,:

uk(n) =

8><
>:

1 if sk + en 2 S

and ~J(sk; rk)� ~J(sk + en; rk) � c(n)

0 otherwise

where en is the element in RN such that the nth com-
ponent is equal to 1 and all other components are
equal to 0.

3. Update sk and rk by the following rule:

sk+1 = f(sk; !k+1; uk)

dk = �
�
g(sk ; !k+1; uk) + ~J(sk+1; rk)

�
�

~J(sk; rk)

rk+1 = rk + kdkrr(J(sk; rk))

where k is a small step size parameter and � is the
discount factor.

4. Return to step 1.

Note that for the control action uk, that we choose in step
2, the following holds:

uk = arg max
u2U

�E
�
g(sk ; !k+1; u) + ~J(f(sk; !k+1; u); rk)

�
In the next section, we apply the TD(0) algorithm to

the Admission Control Problem for a single communication
link.

5. EXPERIMENTAL RESULTS

In this section, we present two case studies: one for a com-
munication link which supports 3 di�erent customer classes
and one for a link which supports 10 di�erent customer
classes. In both cases, the control policy obtained by the
TD(0) algorithm is compared with a policy that always ac-
cepts a new customer n if the required bandwidth b(n) is
available, and otherwise to rejects it. We refer to this policy
as the \Always Accept" policy.

Based on the policies we obtained with the TD(0) al-
gorithm, we designed a \Threshold" policy. The Threshold
policy speci�es for each customer class n a threshold h(n)
in units of bandwidth. If a customer of class n requests
a new connection at time t over the communication link,
we accept only if the used bandwidth B(t) on the link at
time t does not exceed the threshold h(n). Simulating the
policy obtained with the TD(0) algorithm, we could observe
which customer classes get rejected and what percentage of
customers of a particular customer class get rejected. This
insight guided the tuning of the threshold parameters.

As the state space in the �rst case study is relatively
small, we are able to compute the optimal control policy
using methods of Dynamic Programming and to compare
the optimal control policy with the control policy obtained
by the TD(0) algorithm.

We use the average reward per time unit and the lost av-
erage reward per time unit due to customers rejection as per-
formance measures to compare the di�erent policies. Both
averages are based on a single trajectory with 1,000,000
simulation steps, which starts with an empty system. The
trajectory was generated using a random number generator
which was initialized with the same seed for each evaluation.

5.1. Case Study with 3 Customer Classes

In the �rst case study, we consider a communication link
with a total bandwidth of 12 units. We intend to support
3 di�erent customer classes on that link. The parameters,
which describe the customer classes, are indicated in Table
1. The discount rate was set to be 0.5, which translates into

Customer Band- Arrival Departure Reward
Class width, bn Rate, �n Rate, �n cn
1 1 3 0.5 4
2 2 2 0.8 15

3 2 2.5 0.9 12

Table 1: Characterization of the di�erent customer classes

Method Average Lost
Reward Average Reward

Always Accept 40.1 31.8
TD(0) 45.6 26.3
Threshold Policy 47.2 24.7
Optimal Policy 47.2 24.7

Table 2: Performance comparison for the case with 3 di�er-
ent customer classes

a discount factor in the uniformized problem equal to 0.96.

As an approximation architecture, a multi-layer per-
ceptron with one hidden layer and 3 hidden units was used.

Table 2 indicates the performance of the di�erent policies.
We see that the policy obtained through Neuro-Dynamic
Programming is signi�cantly better than the policy which
tries to always accept a new customer. Simulation of the
TD(0) policy revealed that only customers of class 1 are
rejected. Based on this observation, we set the paramet-
ers for the Threshold policy. The obtained policy turned
out to perform as well as the optimal policy obtained with
Dynamic Programming.

5.2. Case Study with 10 Customer Classes

In the second case study, we consider a communication link
with a total bandwidth of 600 units. We intend to support 10
di�erent customer classes with that link. The parameters,
which describe the customer classes, are indicated in Table
3. The discount rate was set to be 0.1, which translates into
a discount factor in the uniformized problem of 0.9997.

As an approximation architecture, a multi-layer per-
ceptron with one hidden layer and 10 hidden units was used.

Table 4 indicates the performance of the di�erent policies.
We see that the policy obtained through Neuro-Dynamic
Programming is signi�cantly better than the policy which
tries to always accept a new customer. Simulation of the
TD(0) policy revealed that only classes 6 and 8 ever get
rejected. Again we used this information to set the para-
meters for the Threshold policy. Similarl to the �rst case
study, we obtained a policy which performed better than the
TD(0) policy.

Method Average Lost
Reward Average Reward

Always Accept 388.5 35.5
TD(0) 394.3 29.7
Threshold Policy 395.8 28.2

Table 3: Performance comparison for the case with 10 dif-
ferent customer classes

Customer Band- Arrival Departure Reward
Class width. bn Rate, �n Rate, �n cn
1 2 15 1.0 2
2 2 15 1.0 1.4

3 4 10 0.8 5
4 4 10 0.8 2.5
5 6 7 0.6 10
6 6 7 0.6 4

7 8 3 0.4 20
8 8 3 0.4 7
9 10 1.8 0.2 50
10 10 1.8 0.2 16

Table 4: Characterization of the di�erent customer classes

6. CONCLUSIONS

Through this study, we showed that methods of Neuro-
Dynamic Programming can provide a viable approach to
the Admission Control Problem in an ATM environment.
We have shown that the control policy obtained through
Neuro-Dynamic Programming led to better policies than a
policy that always accepts a new customer if the required
bandwidth is available. Furthermore, based on simulations
of the policy obtained with TD(0), we obtained an heuristic
\Threshold" policy which performed as well as the optimal
Dynamic Programming policy in the case of a communica-
tion link which supports 3 di�erent customer classes.

7. REFERENCES

[1] D. P. Bertsekas, \Dynamic Programming and Op-
timal Control," Athena Scienti�c, 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis, \Neuro-
Dynamic Programming," Athena Scienti�c, 1996.

[3] G. J. Tesauro, \Practical Issues in Temporal-

Di�erence Learning," Machine Learning, vol. 8,
1988.

[4] R. H. Crites and A. G. Barto, \Improving El-

evator Performance Using Reinforcement Learn-

ing ," Advances in Neural Information Processing
Sustems 8, MIT Press, 1996.

[5] W. Zhang and T. G. Dietterich, \A Reinforcement

Learning Approach to Job Scheduling," Procced-
ings of the IJCAI, 1995

[6] S.P. Singh and D. P. Bertsekas, \Reinforcement
Learning for Dynamic Channel Allocation in Cel-

luar Telephone Systems," Neural Information
Processing Systems Conference, 1996

[7] R. S. Sutton, \Learning to Predict by the Methods

of Temporal Di�erences," Machine Learning, vol.
3, 1988

