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ABSTRACT

To many people, the word “multimedia” simply means the com-
bination of various forms of information: text, speech, music,
images, graphics and video. What is often overlooked is the in-
teraction among these forms. In this paper, we will present our
recent results in exploiting the audio-visual interaction that is
very significant in multimedia communication. The applications
include lip synchronization, joint audio-video coding, and person
verification. We will present the enabling technologies, including
audio-to-visual mapping and facial image analysis, for these ap-
plications. Our results show that the joint processing of audio
and video provides advantages that are not available when audio
and video are studied separately.

1. INTRODUCTION

What is Multimedia? To many people, the word “Multimedia”
simply means the presentation of a combination of various forms
of information: text, speech, audio, music, images, graphics,
and video. What is often overlooked, though, is the interac-
tion among these different forms of information. For multimedia
applications that involves person-to-person conversation, such as
video telephony and video conferencing, the interaction between
acoustic information and visual information is very significant. In
this paper, we will show that joint audio-video processing often
provides major improvement compared to the situation where
audio and video are processed independently.

We will introduce our work in speech-assisted lip synchroniza-
tion and joint audio-video coding. We will discuss the enabling
technologies of these projects. Two major techniques are audio-
to-visual mapping and image analysis for lip tracking.

We will also present a system for bimodal person verification.
This system utilizes the multimedia capability of personal com-
puters to provide a password-free verification process.

2. BIMODALITY OF HUMAN SPEECH

Human speech is bimodal both in production and perception. It
is produced by the vibration of the vocal cord and the configura-
tion of the vocal tract that is composed of articulatory organs in-
cluding: the pharynx, the nasal cavity, the tongue, teeth, velum,
and lips. Using these articulatory organs, together with the mus-
cles that generate facial expressions, a speaker produces speech.
To perceive speech, an observer listens to the acoustic speech and
looks at visible articulatory organs and facial expressions. In fact,
“McGurk Effect” [1] showed that human perception of acoustic
speech can be affected by the visual cues of lip movements. For
example, a video clip in which the speaker’s mouth is saying /ga/
but the audio is dubbed with the sound /ba/, is often perceived
as /da/. There also exists the “reverse McGurk Effect,” i.e., the
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results of lipreading is affected by the dubbed audio speech [2].
Another example of audio-visual interaction is human lipreading
that is widely used by the hearing-impaired for speech communi-
cation. In fact, people who are not hearing-impaired also utilize
lipreading to some extent [3], especially when the auditory envi-
ronment contains background noise.

3. LIP SYNCHRONIZATION AND CODING OF
TALKING HEAD VIDEO

Since human speech perception is bimodal, lip synchronization
becomes an important issue in videotelephony and video con-
ferencing. One typical problem in videotelephony is that, due
to limited bandwidth, the video coder often skips some frames,
which results in a lower frame rate at the decoder. Frame skip-
ping introduces artifacts such as jerky motion and loss of lip syn-
chronization in talking-head video. To solve this, we can extract
information from the speech signal and apply image processing
to the mouth image to achieve lip synchronization [4, 5]. Fig. 1
shows the block diagram of this approach. In this system, im-
age analysis [4, 6] is applied to the input video frames to find
the location and shape of the mouth. Meanwhile, the audio sig-
nal is analyzed to produce a sequence of corresponding mouth
shapes that are missing in the low frame rate video. Details of
these components will be discussed in Sections 4. and 5. An im-
age warping technique [7] is then applied to the input frames in
order to modify the mouth shape to produce new frames that
are to be inserted. Hence, lip synchronization is achieved in the
high frame-rate output video.

Example results: We apply speech-assisted frame-rate con-
version to the “Mom” sequence in which she is saying “. . .told
me. . .”. The result is shown in Fig. 2. The frame on the left
(corresponding to “. . .old”) and the frame on the right (corre-
sponding to “. . .e”) are existing frames in the low frame rate
sequence. The middle one is obtained by interpolation. Note
that a closed mouth shape is rendered for /m/, which would not
be possible without speech information.

For the coding of talking head sequences, audio-coding re-
searchers and video-coding researchers have been working inde-
pendently so far. With audio-visual interaction considered, it is
clear that bimodal perceptual quality tests should be examined
while evaluating video or audio coding standards [8, 9]. Recently,
there has been a trend of research on joint audio-video coding
[4, 10, 11]. We will present an example in this section.

Predictive coding of video has traditionally used information
from previous video frames to help construct an estimate of the
current frame. The difference between the original and estimated
signal can then be transmitted to allow the receiver to reconstruct
the original video frame. This method has proven extremely use-
ful for removing the temporal redundancy in video. Similarly, we
can explore methods that remove cross-modal redundancy. The
basic premise is that there is information in the acoustic signal
that can be used to help predict what the video signal should



         

look like. If the audio indicates that a vowel is being said, one
could predict that the person’s mouth is open. Likewise, if the
audio indicated that a /p/, /b/, or /m/ were being spoken, one
could predict that the person’s mouth is closed. Since the acous-
tic data is also transmitted, the receiver is able to reconstruct
the video with very little side information.

This process is shown in Fig. 3. In this system, an acoustic to
visual predictor estimates a visual parameter set, such as mouth
height and width, given the acoustic data. The image analy-
sis module measures the actual parameter set from the video.
The measured parameter set is compared with the parameter
set estimated from the acoustics, and the encoder decides what
information must be sent. If the acoustic data lead to a good pre-
diction, no data have to be sent. If the prediction is slightly off,
an error signal can be sent. If the prediction is completely wrong,
the measured parameter set can be sent directly. The decision
of what information needs to be sent is based on rate-distortion
criteria. Therefore, this system provides a coding scheme that is
scalable to a wide range of bit rates.

4. AUDIO TO VISUAL MAPPING

One important enabling technology for bimodal speech process-
ing is the mapping from from speech to lip movements. This
problem can be solved from two different perspectives. The first
view stresses that speech is a linguistic entity. The speech is first
be segmented into a string of phonemes, and then each phoneme
can be mapped to the corresponding viseme. This scheme could
be implemented using a speech recognizer followed by a table
lookup to convert to visual parameters [5].

The other view concentrates on speech being a physical phe-
nomenon. Since there is a physical relationship between the
shape of the vocal tract and the sound that is produced, there
may exist a functional relationship between the speech parame-
ters, typically LPC cepstrum [12], and the visual parameters set.
The conversion problem becomes one of finding the best func-
tional approximation given sets of training data. There are many
algorithms that can be modified to perform this task. Vector
quantization [13], neural networks [14], and Gaussian mixture-
based estimation [15] have been used to train this mapping.

4.1. Classification Based Conversion

This approach contains two stages. In the first stage, the acous-
tics must be classified into one of a number of groups. The
second stage maps each acoustic group into a corresponding vi-
sual output. In the first stage, vector quantization can be used
to divide the acoustic training data into a number of classes.
For each acoustic class, the corresponding visual codewords are
then averaged to produce a visual centroid. Therefore, each in-
put acoustic vector would be classified using the optimal acoustic
vector quantizer, then mapped to the corresponding visual cen-
troid. One problem with this approach is the error that results
from averaging visual feature vectors together to form the vi-
sual centroids. Another shortcoming of the classification based
method is that it does not produce a continuous mapping, but
rather produces a distinct number of output levels. This often
leads to a staircase-like reproduction of the output.

4.2. Neural Networks

Multilayer perceptrons [16] can also be used to convert acoustic
parameters into visual parameters. In the training phase, input
patterns and output patterns are presented to the network, and
an algorithm called backpropogation can be used to train the
network weights. The design choice lies in selecting a suitable
topology for the network. The number of hidden layers, and the
number of nodes per layer may be experimentally determined.
Furthermore, a single network can be trained to reproduce all
the visual parameters, or many networks can be trained with
each network estimating a single visual parameter.

4.3. Mixture Based Estimation

Our research has used a method which jointly clusters the audio-
visual features. The probability distribution of the audio-visual
vectors was modeled using Gaussian mixtures. With this para-
metric model for the joint probability distribution of audio and
video, it is possible to derive the optimal estimate of the video
given the audio analytically. Consider estimating a single vi-
sual parameter, v given the acoustic vector a, where a Gaussian
mixture density, fav(a, v), with K mixtures governs the joint
distribution of a, v:

fav(a, v) =

K∑
i=1

ciN (µi,Ri) (1)

ci is the mixture weight, and N (µi,Ri) is a Gaussian density
with mean, µi, and correlation matrix, Ri. The optimal estimate
of v given a is then given by:

v̂ = E[v|a] =

∫
v
fav(a, v)

fa(a)
dv (2)

It can be shown that the optimal estimate above can be writ-
ten in a closed form [15]. Compared to the classification based
approach, the advantages of the mixture based approach include
the more accurate estimation and the continuity of the estimate.

4.4. The HMM Approach

Hidden Markov models have been used by the speech recognition
community for many years. Although the majority of speech
recognition systems train HMM’s on acoustic parameter sets,
visual speech recognition results have shown that they can be
used to model the visual parameter sets also.

Consider estimating a single visual parameter, v, from the mul-
tidimensional acoustic parameter a. The audiovisual parameter
O = [aT v]T . The process for using HMMs for audio-to-visual
conversion would proceed as follows:

Training Phase: Train an N state, left-right, audio-visual hid-
den Markov model on the sequence of observations, O for each
word in the vocabulary. This will give estimates for the state
transition matrix, A, the Gaussian mixture densities associated
with each state, bj(O), and the initial state distribution. Then,
extract an acoustic HMM from this set of parameters by inte-
grating over the visual parameter: baj(a) =

∫
v
bj(O)dO. This

new set of observation probability density functions along with
the previously measured state transition matrix and initial state
distribution will serve as a model for the evolution of the acous-
tic parameters. For each state, j, derive the optimal estimate for
the visual parameter given the acoustics, Ej [v|a]. Since Gaussian
mixtures are modeling the joint distribution of the audio-visual
parameters, this quantity has a closed form solution.

Conversion Phase: When presented with a sequence of acous-
tic vectors which correspond to a particular word, estimation can
occur in one of two ways:

1. The HMM can be used to segment the sequence of acoustic
parameters into the optimal state sequence using the Viterbi
algorithm. Next, the optimal estimate for the visual vector
can be found, using the estimation function which was de-
rived for each particular state.

2. Alternatively, the HMM can be used to find the probability
of being in state j at time t, γt(j), by using the forwards-
backwards algorithm. An estimate of the visual signal can
then be formed as

∑
j
γt(j)Ej [v|a].



        

5. FACIAL IMAGE ANALYSIS

Another enabling technology for bimodel speech processing is
image analysis for tracking of lip movements. Existing image
analysis systems can be divided into two major classes: those
that classify the input image into one of several categories, and
those that measure dimensions of facial features.

Vector quantization and neural networks are standard meth-
ods for classifying input images into several classes. As input,
one could use intensity images, Fourier transform coefficients,
binary images obtained by thresholding, and many of the other
processed versions of the images which are noted above. For
example, a system used in [17] for visual speech recognition ex-
periments took input images and applied a set threshold. The
binary images were then analyzed to extracted parameters such
as the area of the mouth opening, the height, and the width.

Much of the recent work in facial image analysis has centered
around deformable models. Both snakes [18] and deformable
templates [19] fit into this category. The basic idea is that an
energy function which relates a parameterized model to an im-
age is formed. This energy function is minimized using any stan-
dard optimization technique to obtain the optimal parameter
set. Snakes allow one to parameterize a closed contour, and de-
formable templates provide a more general parameterized model.
The energy function associated with deformable templates relates
the template to the image. Energy terms relating to peak po-
tentials, valley potentials, and intensity are also common. These
energy functions are often derived through both intuition and
trial and error.

Now we will examine one analysis system in detail. This
system, using state-embedded deformable templates, is a vari-
ant of deformable templates which exploits statistical differences
in color to track the shape of the lips through successive video
frames [6]. A few assumptions are made concerning the struc-
ture of the input images. First, it is assumed that the image
can be divided into foreground (pixels within the outer contour
of the lips) and background (pixels which are part of the face)
regions. Next, it is assumed that the shape of the foreground
can be modeled by two parabolas as shown in Fig. 4. The tem-
plate is completely specified by the five dimensional parameter
λ = [x1, x2, y1, y2, y3]. Finally, we assume that there are distinct
probability density functions (pdf) which govern the distribution
of pixel colors in the foreground and background.

If we have estimates for the foreground (pixels within the lips)
pdf and background (pixels of the face) pdf, we can evaluate the
joint probability of all pixels in the image. This joint probability
is given by:

P [I|λ] =
∏

(x,y)εfg

bfg(I(x, y))
∏

(x,y)εbg

bbg(I(x, y)) (3)

where P [I|λ] is the joint probability, I(x, y) is the three dimen-
sional pixel value at location (x, y), and bfg and bbg are the
foreground and background pdf’s, respectively. Notice the de-
pendence on λ: if λ is changed, different pixels become part of
the foreground and background, thus changing the joint prob-
ability value. Our visual analysis system uses a maximization
algorithm to find the parameter, λ which maximizes the joint
probability of the pixels in the image.

We model the foreground and background pdf’s as Gaussian
mixtures with two Gaussian’s per mixture. Two mixtures are
needed because one would expect different statistical character-
istics for pixels in the lips, and for those in the mouth opening.
The analysis system tracks the shape and position of the mouth
through successive video frames. For each new frame, our system
must compute the following quantity for every pixel:

P (x, y) = log(bbg(I(x, y)))− log(bfg(I(x, y))) (4)

Since evaluating this quantity is an intensive task, a lookup table
is used to store all of the possible values of the log likelihood
quantity. Once we have the log likelihood image, we can find the
template parameter λ which maximizes the quantity in (3). This
is equivalent to minimizing

f(λ) =
∑

(x,y)εfg

P (x, y) (5)

which can be achieved by a log search algorithm.

6. PERSON VERIFICATION

Recently, there have been a number of techniques [20, 21, 22]
that use lip movement and speech to identify or verify a person.
Modern personal computers with multimedia capabilities, i.e.,
cameras and microphones, provide the basis for these techniques.
In this section, we outline our implementation of such a system.

Existing methods for user verification are based on finger
prints, irises, face images, or voice. Using still images along,
however, can be ineffective because it is easy to store and use
pre-recorded images. Use of voice only is not reliable either be-
cause it is possible to rearrange phonemes from a pre-recorded
speech of a person to generate new phrases. Another problem
with voice-only systems is that they fail under acoustic noise or
echo. Joint use of voice and video can solve these problems.

During the registration phase, the voice and the lip movements
of a user are recorded while the user is saying a certain phrase.
During the verification phase, the user is then asked to read the
displayed phrase. To verify the user, the chosen features of the
user’s voice and video data are compared with that of the stored
data. We use the time variation of the mouth height and width,
i.e., |y3 − y1| and |x2 − x1| in Fig. 4, as video features. The
LPC cepstrum coefficients are selected as the audio features. We
combine the video features and the audio features to form a single
feature vector. To match the sequence of extracted features of
the user to the database, we perform dynamic time warping [12]
(Type II is chosen for simplicity) which is commonly used in
speech recognition. If the distance between two waveforms after
dynamic time warping is below a prescribed threshold, we declare
there is a match and the user is verified.

Example results: Fig. 5 shows the time variations of the mouth
height of each subject while saying “Hello! How are you?” twice.
It can be seen that the lip movements while saying the same
phrase vary a great deal from individual to individual; but they
stay consistently the same for the same subject. The result of
dynamic time warping shows that the the scores of “match” and
“no match” differ by a factor of more than 30.

7. CONCLUDING REMARK

Although we live in a world where we have audio-visual me-
dia and audio-visual transmission in everyday life, so far speech
researchers and image researchers have been working indepen-
dently. In this paper, we have shown that once we break down
the boundary between speech research and image research, we
can invent a large number of new techniques and applications.
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Figure 1. Lip synchronization.

Figure 2. Result of lip synchronization.

Figure 3. Cross-modal predictive coding.
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Figure 4. Template. λ = [x1, x2, y1, y2, y3].

Figure 5. Time variations of the mouth height.


