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Figure 4. Simulation experimental results. For each position (represented by its polar coordinates), two groups of WRRs
are given, corresponding to the arti�cial environmental conditions T60 = 0:2s-SNR = 13dB and T60 = 0:3s-SNR = 10dB.
Each of the set of results consists of four WRRs that correspond, from left to right, to the following experimental conditions:
Mic0, Array, Mic0 +Adaptation, Array +Adaptation.

future work will be devoted to con�rm the advantages of
the hands-free recognition system, here presented, in the
large vocabulary dictation system being developed at IRST
labs.
However, from the results described above other impor-

tant issues remain to be addressed. One is the use of array
geometries alternative to the present linear one: both har-
monic arrays and 2-D arrays represent promising solutions
to be investigated. Another one is the study of new meth-
ods for phone HMM adaptation: a particular attention will
be devoted to techniques that can be applied while the sys-
tem is on-line and in an unsupervised manner. Also the use
of other acoustic features, more robust than mel-based cep-
stral coe�cients, and of adaptive post-�ltering techniques
(to apply to the beamformed signal) could provide further
improvement to the present system performance. Finally,
the dependence of system behavior on discrepancies be-
tween the talker position during training and during testing
(and the inuence of errors in the array steering) deserve to
be investigated.
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energy and noise energy at the respective sources. Noise
propagation was then simulated from the noise source to
each microphone of the array, and the resulting signal was
added to the simulated speech one.
Note that the talker positions were chosen not so close

to the microphone array to determine a very near �eld con-
dition, for which the adopted simulation method was not
retained appropriate.

3.2. New multichannel Real-data Corpus

The multichannel corpus was collected in a large room of the
mentioned size, and characterized by a moderate amount
of reverberation (reverberation time T60 = 0:35s) as well
as by the presence of coherent noise due to some secondary
sources (e.g. computers, air conditioning, etc). Eighty sen-
tences were uttered by four speakers (2 males and 2 females)
in a frontal position at 1.5 m distance from the array. Mul-
tichannel recording of each utterance was accomplished by
using both a close-talk cardioid microphone (CtMic) and
the linear microphone array (in the following called Array).
Distance between the mouth's talker and the ClTalk micro-
phone was approximately 15cm. For comparison purposes,
the �rst microphone of the array (Mic0) was also used as
an independent acquisition channel.
Acquisitions were carried out synchronously for all the

input channels at 16kHz sampling frequency, with 16 bit
accuracy. Signal to Noise Ratio (SNR), measured as ratio
between speech energy and noise energy at the microphones
of the array after having performed an automatic speech-
noise classi�cation as well as a manual check, was estimated
as 30 dB for CtMic.
Once the real-data corpus was collected, three replicas of

each utterance were obtained by means of a loudspeaker,
that is by reproducing the original one acquired through
the ClTalk microphone. Three source positions were used
during this data collection, namely: in front of the array at
1.5 m distance and at 4 m distance; in a lateral position, at
2.9 m distance and �30� angle. These positions represent
a subset of those considered in the simulation experiments.
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Figure 3. Map of the experimental room (7m x 10m x 3m),
showing the positions of talker, loudspeaker, microphone ar-
ray, noise source and furniture.

3.3. Recognition Task

For each speaker, a development set and a test set were
de�ned, that consisted in 20 sentences and 60 sentences,
respectively. Each development set was then used to adapt
phone HMMs of the given speaker. Each test set included
789 words (13492 phone-like units) and was characterized
by a word dictionary size equal to 343. Word Recognition

ClTalk Mic0 Array
RT-(0,1.5) 78.0 3.0 17.0

RT-(0,1.5)-Ada 83.9 31.5 65.5

LS-(0,1.5) 69.2 3.7 13.8
LS-(0,1.5)-Ada 78.8 40.0 64.4

LS-(0,4.0) - 1.8 2.8
LS-(0,4.0)-Ada - 13.6 36.6

LS-(-2.5,1.5) - 1.5 2.8
LS-(-2.5,1.5)-Ada - 14.1 43.8

Table 1. Real environment experimental results. Perfor-
mance is represented as average WRR(%) measured on the
240 sentences of the four speaker test sets, in the cases of
Real Talkers and of LoudSpeaker positioned at three di�er-
ent distances from the array. ClTalk, Mic0 and Array
indicate the three di�erent front-end processing that were
used both with and without phone HMM adaptation.

Rate (WRR) was measured given a Word Loop (WL) gram-
mar having a single state and a self-loop per word; hence,
the resulting perplexity was equal to the dictionary size.

3.4. Real Data Experiments

Table 1 provides performance for the Real Talkers (RT) and
for the LoudSpeaker (LS) in the three given positions.
These results show a noticeable performance degradation

due to the LS-array distance of the second and third posi-
tions and to the severe conditions under which the system
was tested. Most of this degradation seems to be related
to the LS-array distance, for which also the combination
of TDC and HMM adaptation can provide limited perfor-
mance improvement.
Note that a degradation (from 83.9% to 78.8% WRR)

can be observed also passing from the RT case to the LS
case for the position (0; 1:5). This discrepancy was prob-
ably due to a varying distance between the talker and the
ClTalk microphone (while that between LS and ClTalk was
�xed to 15cm) as well as to di�usion properties of the loud-
speaker. This aspect deserves a further inspection, but does
not prevent to make a consistent performance comparison
at di�erent LS positions.

3.5. Simulated Data Experiments

Two simulation sessions were performed, one with fT60 =
0:2s and SNR = 13dBg (SNR that was imposed at the
speech and noise sources), the other with fT60 = 0:35s and
SNR = 10dBg. The latter one can be retained comparable
to the condition of the real-data collection.
Figure 4 shows WRR with the speech source in the 11

positions, under the two simulated environmental condi-
tions. Note that performance in positions (�2:5;1:5) and
(�2:1; 2:1), and in general on the left of the array, were in-
uenced by the presence of the noise source at a low distance
behind the speech source. In this case, simulation could not
reproduce a situation equivalent to that of real-data collec-
tion, where more than one noise sources were distributed in
space and one, in particular, behind the position (0; 4).
Nevertheless, results are consistent and show the good

system behaviour in some hostile conditions. In particular,
the joint use of the array processing and HMM adaptation
always provides a de�nite improvement, respect to the use
of either one microphone of the array or of the adaptation
only. In general, performance seems to be more dependent
on the speech source-array distance than on the angle.

4. FUTURE WORK

The present system is being tested with an arti�cial recog-
nition task, represented by a 343-word loop grammar. A
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Figure 1. Block system diagram that includes three experi-
mental set-up as well as the possible use of adapted HMMs.
In particular, the switch on A corresponds to real data ex-
periments, while the switch on C corresponds to simulations.

and to the inter-microphone distance). Besides, if the array
is characterized by a non adequately low distance between
adjacent microphones, the so-called \spatial aliasing" e�ect
occurs, that is other lobes (called grating lobes) comparable
to the main one appear in the directivity pattern, along di-
rections di�erent from the desired one. Signals propagating
from the directions of grating lobes cannot be discriminated
from those propagating from the steering direction. A way
to reduce these e�ects is to use a higher number of micro-
phones and di�erent geometries, such as those of harmonic
linear arrays or of 2D microphone arrays [11].
In the following, the analysis is limited to the use of a

linear array of eight equispaced microphones, characterized
by a 10 cm distance between adjacent microphones. Figure
2 shows the directivity pattern at 1000Hz and 2000Hz,
when this array is steered in the direction of �30�. Note
that grating lobes are present, with this con�guration, for
frequencies higher than 2400 Hz.
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Figure 2. Directivity patterns of the eight-microphone ar-
ray steered towards � = �30�, evaluated at the frequencies
f=1 kHz and f=2 kHz.

2.2. Acoustic Feature Extraction

The input to the Feature Extractor (FE) corresponds to the
digital version of the close-talk microphone in the case of
the baseline system, and to the TDC processing output (1)
when the microphone array is used.
The FE input signal is preemphasized and blocked into

frames of 20 ms duration. For each frame, 8 Mel scaled
Cepstral Coe�cients (MCCs) and the log-energy are ex-
tracted. MCCs are normalized by subtracting the MCC
means computed on the whole utterance. The log-energy
is also normalized with respect to the maximum value in

the sentence. The resulting MCCs and the normalized log-
energy, together with their �rst and second order deriva-
tives, are arranged into a single observation vector of 27
components.

2.3. HMM-based Recognition System

A set of 34 context independent acoustic-phonetic speech
units is modeled with left-to-right CDHMMs. Output dis-
tribution probabilities are modeled by means of mixtures
having 16 Gaussian components with diagonal covariance
matrices. Model training was accomplished by using a pho-
netically rich italian corpus (APASCI) [12]. The training
set consisted of 2140 sentences uttered by 100 speakers (50
males and 50 females).

2.4. HMM Adaptation

An adaptation technique, based on Maximum a Posteri-
ori (MAP) estimation [13] of model parameters, is used for
HMM adaptation both to the new acquisition channel and
to the speaker.
Only the Gaussian means are adapted while all the

other parameters of the initial models are left unchanged.
Speaker-independent models are used both as initial mod-
els and for setting prior parameters (e.g. each Gaussian
mean vector of the initial models is used as the mean of an
a priori Gaussian distribution). Let mk be the mean vector
of the k-th component of a mixture Gaussian distribution
of an initial model. Under some assumptions, the MAP
re-estimate of the k-th Gaussian mean can be formulated
as:

m̂k =
ck

�k + ck
m0

k +
�k

�k + ck
~mk (2)

where ck denotes the count observed for the k-th Gaussian
component after an iteration of a conventional training al-
gorithm exploiting the adaptation data, m0

k is the corre-
sponding Maximum Likelihood estimate of the k-th Gaus-
sian mean, and ~mk is the prior mean vector. �k is a param-
eter controlling the relative weight of the prior knowledge
and the adaptation data.

3. EXPERIMENTS AND RESULTS

3.1. Simulation Approach

Speech acquisition under di�erent controlled environmental
situations is problematic, especially if various conditions
(noise, reverberation, talker position, etc) need to be in-
vestigated. For this reason, a simulation was realized of
speech propagation and acquisition (by each microphone of
the array) in a large room of the same size (10m by 7m
by 3m) of that used for the real-data collection described
in the next section. Di�erent conditions were recreated,
starting from data previously acquired by a close-talk (Ct-
Mic) microphone, and therefore virtually free of noise and
reverberation. In order to reproduce the e�ect of di�er-
ent talker positions and various amounts of noise and re-
verberation, each CtMic signal was convolved with room
acoustic impulse responses from the speaker to each micro-
phone. These impulse responses were derived by means of
the \image method" [14] that assumes that acoustic wave-
fronts propagating in an enclosure behave as geometrical
rays obeying the reection law. This condition is ful�lled
in the frequency range in which the dimensions of the walls
are large compared with the acoustic wavelength.
Figure 3 shows the map of the room and 11 positions of

the speech source. These positions were chosen in order to
make a comparison of system performance both with dif-
ferent angles at a given distance from the array, and with
di�erent distances at the same angle. Simulations were re-
alized assuming to have a single competitive noise source
concentrated where the noisiest source was present in the
real-data collection. For each utterance, the noise power
was rescaled in order to have the same SNR between speech
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ABSTRACT

The use of a microphone array for hands-free continuous
speech recognition in noisy and reverberant environment
is investigated. An array of eight omnidirectional micro-
phones was placed at di�erent angles and distances from
the talker. A time delay compensation module was used to
provide a beamformed signal as input to a Hidden Markov
Model (HMM) based recognizer. A phone HMM adapta-
tion, based on a small amount of phonetically rich sentences,
further improved the recognition rate obtained by apply-
ing only beamforming. These results were con�rmed both
by experiments conducted in a noisy and reverberant en-
vironment and by simulations. In the latter case, di�erent
conditions were recreated by using the image method to re-
produce synthetic versions of the array microphone signals.

1. INTRODUCTION

In the last years, many experimental activities were devoted
to investigate the use of microphone arrays for hands-free
continuous speech recognition [1, 2, 3, 4, 5, 6].
The system under study at IRST laboratories [7] is based

on a Continuous Density HMM - speech recognizer [8]
trained with a large speech corpus acquired in a quiet room
using a high quality close-talk microphone. In a previous
work, a four-microphone array acquisition system was used
to locate the talker [9] and reconstruct a beamformed sig-
nal, through a Time Delay Compensation (TDC) process-
ing, that represented the input of the recognizer.
Some recognition experiments were conducted in a noisy

o�ce environment and showed performance improvement
due to the use of the microphone array with respect to the
use of one microphone. The mismatch between training and
test conditions was further addressed using a phone HMM
adaptation technique.
Both real environment and simulation experiments were

described in [7]: from that work, the simulation method
turned out to be a precious tool for predicting performance
capabilities of the recognizer, under a wide variety of noisy
and reverberant conditions. Results showed that the com-
bination of the TDC processing and the adapted HMM rec-
ognizer gives signi�cant bene�ts. Results evidenced also
some limits of using only four microphones under reverber-
ant conditions.
Another important aspect that remained to be addressed

was the inuence of the talker position on the system per-
formance. In fact, the above mentioned results referred to
a single talker position (in front of the array at 1.5 m dis-
tance).
This paper has the objective of extending the previ-

ous work evaluating system performance when an eight-
microphone linear array is used and focusing the attention
on the inuence of the talker position on the recognition
rate.

For this purpose, a new database has been collected in
a noisy and reverberant large room and a new set of real-
data experiments and simulations has been performed, as
described in the following.

2. SYSTEM DESCRIPTION

A block diagram of the recognition system is shown in the
Figure 1 (switch on A). The system consists of: a micro-
phone array module that provides a beamformed output
signal, a Feature Extraction (FE) module, a HMM-based
recognizer that can operate either with speaker-independent
HMM phone models or with speaker adapted ones. The Fig-
ure 1 has also the purpose of highlighting two other ways
of providing the input signal to the recognizer, namely: us-
ing a close talk microphone (B) or using a simulator of the
microphone array processing (C). All these aspects will be
detailed in the following.

2.1. Linear Microphone Array

The use of a microphone array for hands-free speech recog-
nition relies on the possibility of obtaining a signal of im-
proved quality, compared to the one recorded by a single
microphone. A microphone array system allows to empha-
size the talker message, as well as to reduce noise and re-
verberation components, so that it could be used to make
a system working \independently" of the talker position.
Let us assume that a talker produces a speech message

s(t) that is acquired by microphones 0; :::::;(M � 1) as sig-
nals s0(t),....,sM�1(t). Signals sampled by microphones i
and k are characterized by a relative delay �ik of the di-
rect wavefront arrival. Time delay estimation is a critical
issue under noisy and reverberant conditions: in this work
we adopted a CrosspowerSpectrum Phase (CSP) technique,
that was shown to be e�ective for acoustic event detection
and location [10]. Once the relative delay �̂0k of direct wave-
front arrival between microphone 0 and k has been esti-
mated, the simplest technique to reconstruct an enhanced
version ŝ(t) of the acoustic message is based on a Time De-
lay Compensation (delay and sum beamformer):

ŝ(t) =
1

M

M�1X

k=0

sk(t+ �̂0k): (1)

With a linear array of few microphones, even without
errors in the delay estimates, only a moderate directivity of
acquisition over a restricted bandwidth can be achieved.
If the array is steered in a direction that is di�erent

from that of the wavefront arrival, the spectrum of the ar-
ray's output is distorted in a way depending of the beam-
former transfer function. Typically, this distortion results
in an attenuation of the high-frequency components of the
source signal. This e�ect is mainly due to the fact that the
beamwidth of the beamformer is inversely proportional to
the frequency (as well as to the number of microphones,


