
MICROPHONE ARRAY RESPONSE TO SPEAKER MOVEMENTS

Yves GRENIER

ENST - D�epartement Signal
46 rue Barrault, 75634, Paris 13, France.

e-mail: grenier@sig.enst.fr

So��ene AFFES

INRS-T�el�ecommunications
Ile des Soeurs, Verdun, H3E 1H6, Canada.
e-mail: affes@inrs-telecom.uquebec.ca

ABSTRACT

Matched �ltering and adaptive beamforming are both nec-
essary for e�cient speech dereverberation and noise reduc-
tion by microphone arrays. This can be achieved by the
identi�cation of impulse responses. In this contribution,
we show that adaptive microphone arrays are sensitive to
identi�cation errors of impulse responses, particularly due
to speaker movements. We prove that adjusted matched-
�ltering and permanent tracking of impulse responses are
also necessary. The proposed microphone array responds
well to these requirements under realistic conditions.

1. INTRODUCTION

Successful microphone array processing of speech should
achieve speech dereverberation and e�cient noise reduction,
and should also show a high adaptation capacity to speaker
movements [1]. So far, these issues have been addressed
separately. In [6],[7] we implemented these requirements
and proved the e�ciency of the proposed microphone array
in noise reduction and speech dereverberation. We herein
assess its robustness and response to speaker movements.

In [1],[2], the problem of speech dereverberation is ad-
dressed. The dereverberation capacity of matched-�lter
processing proposed therein is reported. However, �xed
impulse responses are either measured or calculated from
the room geometry, and the speaker movements are not
tracked. An adaptive identi�cation procedure of impulse
responses would allow a permanent tracking (i.e. adjusted

matched-�ltering). Besides, a very large number of micro-
phones is used with an underlying Delay-Sum beamforming
structure. This structure is suboptimal for noise reduction
and its performance increases only with a larger number of
microphones. A more e�cient beamformer would require a
smaller number of microphones.

In [3],[4], the problem of noise reduction is addressed.
The noise reduction capacity of adaptive beamforming such
as the GSC structure [5] is reported therein. However,
speech dereverberation is not implemented and speech is
assumed to propagate in free space. It is known though,
that adaptive beamforming is very sensitive to propagation
modeling errors and to speaker location uncertainties and
that speech cancelation may occur. To reduce this phe-
nomenon, suboptimal GSC structures for noise reduction
are �nally proposed in [3],[4]. Although the geometrical
location of the speaker is particularly tracked in [4], the
multipath signals due to re
ections and reverberation do

not allow for an optimal implementation of the GSC struc-
ture for noise reduction and speech remains reverberated.
A combination with an adjusted matched-�lter processing
would achieve better performance.

Contrary to previous methods [1]-[4], we addressed in
[6],[7] all the above issues together and proposed an e�-
cient microphone array relying on adaptive identi�cation of
impulse responses. Based on this characterization, we dere-
verberate speech by adjusted matched �ltering as in [1],[2],
and optimally reduce noise by GSC beamforming [5] as in
[3],[4]. In [6],[7], we assessed the capacity of the proposed
microphone array in noise reduction and speech derever-
beration. In this contribution, we speci�cally evaluate its
sensitivity and its response to local speaker movements and
show its capacity to track them in real situations.

2. CONFIGURATION AND ALGORITHM

We consider for our application an array of m = 12 micro-
phones located around the screen of a computer workstation
in a large banker market trading room of 30 m length by
20 m width and 3 m height1. In this large room, we mea-
sure at di�erent locations a quite constant reverberation
time of about 1.7 s. As shown in Fig. 1, six microphones
are linearly placed along the top edge of the workstation,
and six others are placed on both the left and right edges.
The spacing between each pair of adjacent sensors is 0.07
m. This array feeds the front-end receiver of a hands-free
telephone installed on an operator desk. The loudspeaker
is �xed to the keyboard. Three nominal positions of the
operator are considered for the study (i.e. center, left and
right, see Fig. 1).

We model the signals received from the array of m = 12
microphones in the frequency domain as follows:

Xf;n = Gf;nsf;n +Nf;n : (1)

The subscripts f = 0; � � � ; 2L� 1 and n respectively denote
in (1) the FFT over 2L snapshots of the indexed quantity at
the frequency bin f and the block of input data number n.
Notice that signals are received at a sampling frequency of
8 kHz. In (1), Xf;n denotes the m-dimensional observation
vector, sf;n is the speech signal emitted from the operator
and Nf;n is the noise vector. Noise particularly contains
cocktail party speech, double talk, and possibly a strong

1Recordings were made by ENST, France, and PAGE Iberica,
Spain, in Banesto in Madrid, Spain.



echo emitted from the loudspeaker. Them-dimensional vec-
tor Gf;n denotes the impulse responses from the operator's
mouth to the microphones in the frequency domain.
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Figure 1: Con�guration of microphone array in a banker
market trading room.

Let us de�ne the mean energy of impulse responses in
the frequency domain by �2f = kGfk2=m. In [6],[7], we ob-

served that �2f is constant for any location of the speaker
around the central position shown in Fig. 1, and that it can
be measured once for all. This property solves the ambigu-
ity of the multiplicative factor between Gf;n and sf;n. We
hence rewrite equation (1) as follows:

Xf;n = �f;n Uf;n +Nf;n ; (2)

where the complex vector Uf;n = Gf;n=�f is the propaga-
tion or signal subspace basis vector with norm

p
m, and

where the complex scalar �f;n = �f sf;n is the signal pa-
rameter. In the following, we view this equation as an iden-
ti�cation problem in the narrowband case. We hence apply
a beamforming and subspace-tracking method to extract
the speech sf;n (i.e. �f;n) and to fully identify the impulse
responses Gf;n (i.e. Uf;n) as shown below.

Actually, the main structure of the algorithm for speech
acquisition and noise reduction is well described in [6]. It
can be also inferred from the generalization to echo cancela-
tion and speech acquisition in double talk situations in [7].
Here we brie
y mention the major steps of the algorithm.

We �rst assume that an estimate of Uf;n at iteration n

say Ûf;n is available. Then we estimate the signal parameter
and e�ciently reduce the noise by a GSC beamformer [5]:

�̂f;n = ŷf;n �W
H
f;nP

H
f;nYf;n ; (3)

where ŷf;n = ÛH
f;nXf;n=m is the output of an adjusted

matched-�lter with a Delay-Sum structure. This �lter com-
pensates the impulse responses and dereverberates speech.
On the other hand, the adaptive �lter Wf;n of the GSC
side-structure optimally reduces colored noise from the syn-
chronized inputs Yf;n = diag[ÛH

f;n]Xf;n after projection by

the blocking matrix Pf;n (i.e. PH
f;nÛf;n = 0) [5].

We secondly identify Uf;n by a subspace-tracking pro-
cedure [6],[7]:

~Uf;n+1 = Ûf;n + �n�f;n(Xf;n � Ûf;nŷf;n) ŷ
H
f;n ; (4)

where �f;n is the step-size of the LMS-like tracking equa-
tion possibly including a normalization factor, and where
�n is a voice activity detector equal to 1 during speech ac-
tivity and 0 otherwise [6],[7]. Notice that ~Uf;n+1 denotes
an unconstrained estimate of Uf;n+1. In a block processing
scheme, we actually have to force the structure of the re-
sulting impulse responses in the time domain to correspond
to a linear convolution. This step which amounts to setting
the last half of impulse response coe�cients in the time
domain to zero provides the constrained estimate Ûf;n+1.

With blocks shifted each K snapshots, we �nally esti-
mate the speech signal at the block n+1 in an OLS (overlap-
save) scheme by:

[ŝ (K(n+ 1)) ; � � � ; ŝ (K(n+ 1) + 2L� 1)] =

Re

n
IFFT

�h
�̂0;n
�0

; � � � ; �̂2L�1;n
�2L�1

i�o
: (5)

As blocks overlap over 2L �K samples, we only keep the
segment containing the �rst K samples. We further reduce
the residual noise by spectral subtraction [6].

In comparison to the above algorithm, matched �lter-
ing was proposed in [1],[2] for speech dereverberation, but
�xed impulse responses are measured or computed therein
and optimal beamforming was not considered for noise re-
duction. On the other hand, GSC beamforming was used
in [3] and [4]; but without matched �ltering speech cance-
lation and/or suboptimal noise reduction are observed and
speech remains reverberated. Contrary to these methods,
we dereverberate speech and optimally reduce noise. The
e�ectiveness of our method relies on an adaptive identi�ca-
tion of impulse responses.

3. EVALUATION

As we increase the degrees of adaptivity of the microphone
array, it becomes more sensitive to nonstationarities. In
this section, we speci�cally evaluate the sensitivity of the
proposed array to identi�cation errors of impulse responses
and assess its response to speaker movements with quanti-
tative measurements.

To do so, we shall need to synthesize simulated data
so as to access these measurements. We actually take spe-
cial care to make our experiments with simulated data very
close to reality. Indeed, we record in an anechoic room a
clean speech signal uttered from a speaker to simulate the
original speech of the operator. We then convolve it with
the impulse responses measured inside the trading room
from any selected nominal position of the speaker to the
array of microphones (see Fig. 1). This convolution faith-
fully reproduces the reverberation e�ect of the large banker
market trading room. The convolved signals are �nally cor-
rupted at a mean SNR of 7 dB by a real background noise
recorded separately at work time in the trading room. The
background noise contains cocktail party speech due to the
large number of operators present in the trading room, the
noise of keyboards, the noise of the workstation fans, etc� � �,
and makes the experiment very close to reality.



3.1. Sensitivity and response to identi�cation

errors from initialization

We �rst assess the sensitivity of the array to identi�cation
errors when the operator speaks from central position and
when impulse responses are started with a geometrical prop-
agation [6]. We skip the tracking step of equation (4) (i.e.
�f;n = 0). This amounts to the simple TDC (time delay
compensation) usually employed [3],[4].
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Figure 2: Total response (Ûf;n=m � Pf;nWf;n)
HGf;n=�f;n

before (i.e. initial) and after 1 s (i.e. �nal) of speech activ-
ity. (a) Gain in dB. (b) Phase in Radian.

In Fig. 2-a, we plot the gain of the total response from
the central position of the speaker to the processor output
(i.e. j(Ûf;n=m�Pf;nWf;n)

HGf;n=�f;nj2). The initial curve
corresponds to TDC, and shows the usual approximation
of classical arrays to be inadequate beyond a small low fre-
quency region. The �nal curve corresponds to the identi�ed
impulse responses after convergence of (4) within 1 s from
speech activity start, and shows that signal leakage is quite
negligible. Despite the small distortions in amplitude and
phase observed in Fig. 2-a and Fig. 2-b respectively, the
audible quality of the output speech sounds very natural
while point jammers are signi�cantly reduced. We actu-
ally measure at output a clarity index of 18 dB [6], which
is higher than the commonly accepted 12 dB threshold for
speech quality, and an output SNR as high as 19 dB.

This experiment shows, for a particular position of the
operator, that matched �ltering and GSC beamforming are
sensitive to identi�cation errors of impulse responses. The
proposed algorithm corrects them and shows a large ca-

pacity in noise reduction and speech dereverberation in ad-
verse conditions. It proves that the identi�cation of impulse
responses is necessary to achieve e�cient noise reduction
and speech dereverberation by adaptive beamforming and
matched �ltering respectively.

3.2. Sensitivity and response to identi�cation

errors from one position to another

We show next how sensitive matched �ltering and GSC
beamforming are to identi�cation errors and how the algo-
rithm responds to them with other positions of the speaker.
In Fig. 3, we repeat the experience of Fig. 2 with the op-
erator placed this time at the left position.
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Figure 3: Gain in dB as in Fig. 2 when speech comes now
from the left position. (a) Initialization with TDC from
central position as in Fig. 2. (b) Initialization with the
impulse responses obtained after convergence in Fig. 2.

In Fig. 3-a, we �rst initialize the algorithm with TDC as
in Fig. 2. Without tracking, we naturally notice that iden-
ti�cation errors of impulse responses are higher by simple
TDC from central position. However, the proposed micro-
phone array is still able to correct these errors in an e�-
cient way. This �gure shows the capacity of the algorithm
to track impulse responses from di�erent speaker locations
with the same and simple initialization by TDC. No further
approximations are needed to start the algorithm.

In Fig. 3-b, we secondly initialize the algorithm with the
impulse responses from central position obtained after con-
vergence in Fig. 3-a. Although identi�cation errors without



tracking are smaller, they are still signi�cant to make speech
signal cancelation e�ective. They illustrate the sensitivity
of matched �ltering and GSC beamforming to identi�cation
errors of impulse responses from one speaker position to an-
other. However, the proposed algorithm properly corrects
these errors by the subspace-based tracking procedure of
impulse responses in (4).

This �gure shows that the identi�cation of impulse re-
sponses at one speaker position is insu�cient, and proves
that permanent tracking is necessary to properly follow
speaker movements. It proves that matched �ltering cannot
allow for an e�cient noise reduction with �xed estimates of
impulse responses unless they are adjusted in time.

3.3. Tracking capacity of sudden speaker

movements

We now evaluate the algorithm in the case of sudden speaker
movements and show its capacity to adapt to this situation.
To do so, we assess in Fig. 4 its tracking behavior for a sud-
den change of the speaker position from the left-side to the
right-side location (see Fig. 1).

We actually initialize the tracking procedure with the
impulse responses from the left-side position obtained after
convergence in Fig. 3-b. Right after the movement of the
speaker, we just notice a small attenuation of the speech
signal until the attack of the second sentence. This short
duration of speech activity is the time interval that is nec-
essary for the tracking procedure to adapt to the sudden
change in speaker position.
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Figure 4: Gain when speaker suddenly moves from left to
right, just after the movement (dashed), and after 1 s of
speech activity (solid).

In Fig. 4, we plot the gain of the proposed system just
after the movement of the speaker (dashed), and after 1 s
of speech activity (solid). We notice that the sudden move-
ment of the speaker from the left to the right-side position
instantaneously entails large identi�cation errors. Actually,
this amounts to a new initialization of the algorithm during
speech activity. We also notice that 1 s of speech activ-
ity is su�cient for convergence, although small notches at
few frequencies still require a further processing time due
to larger initial errors in the learning curve.

This experiment proves the tracking capacity of the al-
gorithm to properly adapt to fast speaker movements.

4. CONCLUSION AND PERSPECTIVES

To achieve optimal performance in speech dereverberation
and noise reduction by microphone arrays, the identi�ca-
tion of impulse responses is necessary [6]-[8]. We herein
showed the sensitivity of adaptive microphone arrays to
identi�cation errors of impulse responses. We hence proved
that permanent tracking of impulse responses (i.e. adjusted
matched-�ltering) is also necessary to adapt to speaker mo-
vements. Contrary to previous methods [1]-[4], the micro-
phone array proposed in [6],[7] adaptively identi�es impulse
responses, simultaneously dereverberates speech and e�-
ciently reduces noise. We herein proved its capacity to re-
spond to speaker movements and to identi�cation errors.

A future point to address is the tracking capacity of
the algorithm when the operator is in the far-�eld of mi-
crophones. All the experiments in this paper were indeed
made in the near-�eld. However, recent experiments as-
sessing a mini-teleconference mode with six microphones,
all placed in the far-�eld at about 3 m from speakers mov-
ing in a meeting room, proved an adapted version of the
algorithm to behave normally [8]. These preliminary tests
already made for another application exclude speci�c prob-
lems due to the tracking in the far-�eld, but a deeper study
should follow with a detailed evaluation.
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