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Abstract — It is essential for an efficient frequency and time slot allo-
cation procedure in future mobile communication systems using space
division multiple access (SDMA) to determine the mobiles that are spa-
tially well separated from one another. Thus, once a mobile desires to
initiate a call, precise knowledge of the 2-D arrival angles of its domi-
nant wavefronts is required. In this application, 3-D Unitary ESPRIT for
joint 2-D angle and carrier estimation offers an efficient way to handle
such mobile access requests since it provides efficient high-resolution
measurements of the spatial characteristics of the wireless channel, even
if only a small number of antennas is available at the base station. Au-
tomatic pairing of the 3-D estimates is achieved via a new simultaneous
Schur decomposition (SSD) of three real-valued, non-symmetric matri-
ces. In general, the SSD enables anR-dimensional extension of Unitary
ESPRIT (R � 3) to estimate several undamped R-dimensional modes
or frequencies along with their correct pairing in multidimensional har-
monic retrieval problems. Here, we present a Jacobi-type method to
calculate the SSD. For each of theR dimensions, the corresponding fre-
quency estimates are obtained from the real eigenvalues of a real-valued
matrix. The SSD jointly estimates the eigenvalues of allR matrices and,
thereby, achieves automatic pairing of the estimatedR-dimensional mo-
des via a closed-form procedure that neither requires any search nor
any other heuristic pairing strategy.

1. Introduction

Due to its simplicity and high-resolution capability, ESPRIT has
become one of the most popular subspace-based direction of arri-
val or frequency estimation schemes. For certain array geometries,
namely centro-symmetric arrays, or undamped modes the compu-
tational complexity can be reduced significantly by formulating an
ESPRIT-type algorithm in terms of real-valued computations throug-
hout. The resulting algorithm is called Unitary ESPRIT since the
estimated phase factors are automatically constrained to the unit
circle [5]. Furthermore, Unitary ESPRIT has recently been exten-
ded to the 2-D case to provide automatically paired azimuth and
elevation angle estimates [6, 11, 3]. If, however, the carrier fre-
quencies of the impinging wavefronts are no longer known (e.g.,
due to Doppler shifts) and may differ, the 2-D arrival angles, azi-
muth and elevation, and the corresponding carrier frequencies have
to be estimated simultaneously. This model applies, for instance, to
the surveillance radar system discussed in [10] and requires a 3-D
extension of Unitary ESPRIT.
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of Network Theory and Circuit Design, Technical University of Munich,
D-80290 Munich, Germany. It was supported by the German Research
Foundation (DFG) under contract number 322-730. The authors would
like to thank Prof. Werner Wiesbeck and his research group (University
of Karlsruhe, Germany) for providing the results of their 3-D ray tracing
simulations. Their help is gratefully acknowledged.

2. Mobile Access Requests in SDMA Applications

In future mobile communication systems, space division multiple
access (SDMA) will enable mobiles that are located at spatially
distinct angles from the base station to operate on the same frequency
as well as in the same time slot [9]. Therefore, it is essential for an
SDMA frequency and time slot allocation procedure to determine the
mobiles that are spatially well separated from one another. Thus,
once a mobile desires to initiate a call, precise knowledge of the
2-D arrival angles of its dominant wavefronts is required. These
estimated 2-D arrival angles can also be used for efficient downlink
beamforming.

3-D Unitary ESPRIT for joint 2-D angle and carrier estima-
tion offers an efficient way to handle such mobile access requests
in mobile communication systems using SDMA, since it provides
efficient high-resolution measurements of the spatial characteristics
of the wireless channel. In this application, all users in a particular
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Figure 1: Using noise-corrupted measurements from an antenna array at the
base station, 3-D Unitary ESPRIT estimates the 2-D arrival angles, frequency
offsets, and attenuation factors of the dominant multipaths of all users that
transmit on the access request channel, as illustrated on the left side. Azimuth
(�180� < �i � 180

�), elevation (0� � �i � 90
�), and the direction

cosines ui and vi are defined on the right side of this figure.

cell are assigned individual pilot tones that are transmitted on a se-
parate access request channel if a user wants to initiate a call. The
frequencies of these pilot tones can be quite close to one another.
It is a major advantage of the proposed technique that neither syn-
chronization nor carrier recovery is required on the access request
channel. Using noise-corrupted measurements from an antenna ar-
ray at the base station,1 3-D Unitary ESPRIT jointly estimates the
2-D arrival angles and frequencies of the dominant multipath com-
ponents, cf. Figure 1. Notice that the precise carrier frequencies of
the dominant multipaths are usually unknown since the oscillators
at the transmitters have certain tolerances. Moreover, the estimated
frequencies enable us to assign the corresponding 2-D arrival angles
to the different users that transmit on the access request channel.
After estimating the 2-D arrival angles and the associated carrier

1As in the 2-D case, the antenna array must be centro-symmetric and
exhibit a dual invariance structure [6, 3].



frequencies, the attenuation factors of these dominant multipaths
can be obtained via a simple least squares fit.

Let the frequencies (fc + fi), 1 � i � d, be the precise carrier
frequencies of the d dominant multipath components, where fc de-
notes an approximate “center” frequency of the assigned (nominal)
pilot tones. Then, the noise-corrupted measurements are converted
to “baseband” using the carrier fc as illustrated on the left side of
Figure 1. Afterwards, 3-D Unitary ESPRIT operates on these down-
converted measurements and jointly estimates the three components
of the frequency vectors �i = [ �

(1)

i �
(2)

i �
(3)

i
] with

�
(1)

i =
2�(fc + fi)

c
�xui; �

(2)

i =
2�(fc + fi)

c
�yvi;

and �
(3)

i = 2�fiTs; 1 � i � d;

for all dominant multipath components. Here, ui = cos �i sin �i
and vi = sin�i sin �i; 1 � i � d, are the direction cosines of the
ith source relative to the x- and y-axes as illustrated on the right side
of Figure 1. Moreover, c denotes the propagation velocity, �x and
�y the sensor distances in x- and y-direction, and Ts the sampling
interval.

3. Multidimensional Extension of Unitary ESPRIT

In the more general R-dimensional case, the d frequency vectors

�i =
�
�
(1)

i �
(2)

i : : : �
(R)

i

�
; 1 � i � d; (1)

that correspond to the d R-dimensional modes, and their correct
pairing are estimated from the noise-corrupted measurements [4, 3].

A very simple and efficient way to achieve this goal would be
an R-dimensional extension of Unitary ESPRIT [4, 3]. As in the
1-D case [5], the algorithm is formulated in terms of real-valued
computations throughout. After the computation of a basis for
the estimated signal subspace through a real-valued SVD of the
transformed data matrix, R overdetermined real-valued systems of
equations can be formed. They are solved independently via least
squares, total least squares, or structured least squares [3] yielding
R real-valued matrices �r 2 Rd�d, 1 � r � R. Note that these
matrices are not necessarily symmetric.

In the noiseless case or with an infinite number of experi-
ments N , the R least squares solutions �r admit the following
eigendecompositions

�r = T
rT�1 with 
r = diag

�
tan

�
�
(r)

i

2

��d

i=1

; (2)

1 � r � R. Notice first that all the matrices in (2) are real-valued.
Secondly, if the matrix of eigenvectors T 2 Rd�d in the spectral
decomposition of�r = T
rT�1 is the same for all r; 1 � r � R,
the diagonal elements of the matrices 
r and, therefore, also the
desired frequencies in (1) are automatically paired.

In practice, though, only a finite number N of noise-corrupted
experiments (or measurements) is available. Therefore, theR ma-
trices �r do not exactly share the same set of eigenvectors. To
determine the set of eigenvectors only from one of the �r is, ob-
viously, not the best solution, since this strategy would rely on an
arbitrary choice and would also discard information contained in
the other R � 1 matrices. Moreover, each of the �r might have
some degenerate (multiple) eigenvalues, while the whole set �r,
1 � r � R, has well determined common eigenvectors T (for
N ! 1 or �2N ! 0). Thus, from a statistical point of view and
for the sake of accuracy and robustness, it is desirable to compute

the “average eigenstructure” of these matrices [2]. In the 2-D case,
automatic pairing can be achieved by calculating the eigenvalues of
the “complexified” matrix �1 + j�2 2 Cd�d; cf. the derivation
of 2-D Unitary ESPRIT in [6, 11, 3]. If, however, R > 2, this
“trick” has to be extended to the R-dimensional case. To this end,
we will present a Jacobi-type method to calculate a simultaneous
Schur decomposition (SSD) of several matrices.

4. Simultaneous Schur Decomposition (SSD)

Recall that the real eigenvalues of a real-valued non-symmetric ma-
trix can efficiently be computed through an eigenvalue-revealing
real Schur decomposition. In the noiseless case or with an infinite
number of experiments N , the new SSD of the R matrices �r,
1 � r � R, yields R (real-valued) upper triangular matrices that
exhibit the automatically paired eigenvalues on their main diago-
nals. Under the assumption of additive noise and a finite number
of experiments N , an orthogonal similarity transformation might
not be able to produce R upper triangular matrices simultaneously,
since theR “noisy” matrices do not share a common set of eigenvec-
tors. In this case, the resulting matrices should be “almost” upper
triangular in a least squares sense as explained in the sequel.

To derive an appropriate algorithm, letL(�r) denote an opera-
tor that extracts the strictly lower triangular part of its matrix-valued
argument by setting the upper triangular part and the elements on the
main diagonal to zero. Then, we want to minimize the cost function

 (�) =

RX
r=1



L(�T
�r�)



2
F

(3)

over the set of orthogonal matrices� 2 Rd�d that can be written
as products of elementary Jacobi rotations. As usual, k�kF denotes
the Frobenius norm.2

In Jacobi-type algorithms, the orthogonal matrix� is decom-
posed into a product of elementary Jacobi rotations
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such that

� =
Y

# of sweeps

dY
q=1

q�1Y
p=1

�qp: (5)

Jacobi rotations�qp are defined such that all diagonal elements of
�qp are 1 except for the two elements c in rows (and columns) p
and q. Likewise, all off-diagonal elements of�qp are 0 except for
the two elements s and �s, cf. (4). The real numbers c = cos#
and s = sin# are the cosine and sine of a rotation angle #. In the
sequel, we describe a procedure to choose the rotation angle # at a
particular iteration such that the cost function (�) is decreased as

2If all the �r were symmetric, the minimization of (3) would achieve
an approximate simultaneous diagonalization of these matrices. An effi-
cient Jacobi-type technique to achieve such an approximate simultaneous
diagonalization has been presented in [1, 2]. This algorithm, however, is
not applicable in our case, since the�r are not symmetric. Therefore, the
minimization of the sum of the off-diagonal norms of theseR matrices via a
sequence of simultaneous orthogonal transformations as discussed in [1, 2]
would not reveal the desired “average eigenstructure” of these non-symmetric
matrices.



much as possible. To this end, observe that, at each iteration, theR
real-valued matrices�r are transformed according to

�
0

r = �
T
qp�r�qp; 1 � r � R: (6)

It is easily seen that the orthogonal transformation (6) changes only
elements of �r that appear in rows and columns p and q. The
change of the cost function (3) at this iteration may be expressed as

� (�qp) =

RX
r=1

�

L(�0

r)


2

F
� kL(�r)k

2

F

�
: (7)

Let �(r)
k`

denote the (k; `)-entries of the matrices �r , 1 � r � R.
In [4], it was shown that the critical points of� (�qp) in (7) can be
obtained from the real-valued roots of the fourth order polynomial

p(t) =
�

1 t t2 t3 t4
�
�

RX
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c(r): (8)

Its real-valued coefficients are easily constructed from the entries of
the R matrices�r , namely
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and cadd(a; b) =
�
a � b a2 � b2 0 a2 � b2 �a � b

�T
:

Observe that only the real-valued roots of p(t) yield valid options
for the desired orthogonal rotation�qp. A real-valued critical point
of � (�qp) is a minimum if

d

d#

�
p(tan#)

(1 + tan2 #)2

�
> 0:

Straightforward calculations show that this condition is met if

dp(t)

dt
= c1 + 2c2t+ 3c3t

2
+ 4c4t

3
> 0; (9)

where
�
c0 c1 c2 c3 c4

�T
=

RX
r=1

c(r)

and t = tan#. Notice that there are at most two real-valued roots
that satisfy (9). From these possibilities, we choose the value of t (or
the corresponding rotation angle #) that minimizes (7). However,
we only use the corresponding elementary Jacobi rotation�qp if

� (�qp) < 0;

i.e., the chosen rotation reduces the cost function. Otherwise, no
rotation is applied at this particular iteration step. Such a strat-
egy is closely related to the one-dimensional Jacobi-type methods
discussed in [7].

If c4, the coefficient of t4 in (8), i.e., the last component of the
coefficient vector

PR

r=1
c(r); equals zero, p(t) reduces to a third

order polynomial. Then t =1 is also a critical point of � (�qp).
It corresponds to a valid option for the rotation angle #, i.e., a
minimum of � (�qp), if c3 > 0.

Table 1: Simulation parameters obtained from 3-D ray tracing. The cor-
responding map locations of the base station and the mobile users can be
identified in Figure 2. Moreover, the number of individual wavefronts and
the frequencies fi are listed (fc = 1000 MHz).

user map location # of simulated wavefronts fi

1 306 278 -20 kHz
2 360 83 -15 kHz
3 406 319 -10 kHz
4 420 77 -5 kHz
5 600 335 0 kHz
6 720 146 5 kHz
7 980 747 10 kHz
8 1013 127 15 kHz

5. Simulations Based on Ray Tracing Using a
Topographical Map of Munich

Figure 2: Rastered map of downtown Munich showing the location of the
base station (Tx) and a route containing 1050 measurement points.

The presented simulation results use realistic 2-D arrival angles deri-
ved from a ray tracing program for macrocell environments [8]. They
are based on a three-dimensional topographical model of downtown
Munich, where the height of the base station was 26 meters and
the height of the transmitter at the mobiles 2 meters. The heights
of most buildings varied between 10 and 30 meters as depicted in
Figure 2. In this urban environment, the propagation conditions at
fc = 1000 MHz were predicted via 3-D ray tracing, taking into
account wave interactions like diffraction and scattering over each
propagation path [8]. Ray tracing tools developed at the University
of Karlsruhe provided the channel impulse response of each propa-
gation path in terms of its attenuation, time delay, 2-D launching
angle (at the transmitter), and 2-D arrival angle (at the receiver).
The resulting coverage predictions agree with measurements taken
in the same urban area.

In the simulations, we have used 8 users, and a random phase
shift was assigned to each propagation path. Furthermore, we have
employed a uniform rectangular array (URA) ofM1 �M2 =4� 4
antennas and a window length of M3 = 625 snapshots. The geo-
graphical locations of the 8 mobile users in downtown Munich and
the geographical location of the base station (Tx) are depicted in
Figure 2. Notice that the corresponding map locations and carrier
frequencies fc + fi of the mobile users are specified in Table 1.
The number of simulated wavefronts per mobile user is also listed
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Figure 3: Simulation results obtained with 3-D Unitary ESPRIT and a URA ofM1�M2 = 4� 4 elements, M3 = 625 snapshots, and a sampling interval
of Ts = 7:385 �s (smoothing parameters: L1 = 1, L2 = 2, L3 = 501). The figures on the top (1st and 3rd row) show the 2-D arrival angles for the 8 users
of Table 1, predicted via ray tracing, and their associated power as a function of the direction cosines in theu-v plane, while the figures on the bottom (2nd
and 4th row) depict the estimated power in theu-v plane, averaged over 20 trials. Clearly, the dominant 2-D arrival angles of all users are identified correctly.

in Table 1. Rows 1 and 3 of Figure 3 illustrate the corresponding
2-D arrival angles at the base station predicted via 3-D ray tracing.
More precisely, they show the power of the impinging wavefronts
as a function of the direction cosines in the u-v plane (linear scale).
The power of the additive noise was 20 dB below the total power of
each user.

To estimate the dominant 2-D arrival angles and the associated
carrier frequencies, 3-D Unitary ESPRIT and LS were used in con-
junction with 3-D smoothing [3]. Rows 2 and 4 of Figure 3 depict
the estimated 2-D arrival angles and their associated power, avera-
ged over 20 trials. The estimated carrier frequencies were used to
associate the estimated 2-D arrival angles with the 8 users. Although
up to 747 individual wavefronts were simulated for each user, cf. Ta-
ble 1, the dominant 2-D arrival angles of all 8 users are identified
correctly.
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