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ABSTRACT

Many signal processing systems use event driven mecha-
nisms - typically based on �nite state machines (FSMs) -
to control the operation of computationally intensive (data

ow) parts. The state machines in turn are often fueled
by external inputs as well as by feedback from the signal
processing portions of the system. Packet-based transmis-
sion systems are a good example for such a close interaction
between data and control 
ow. For an e�cient design 
ow
it is of crucial importance to be able to model and analyze
the complete functionality of the system within one single
design environment. Therefore, we developed a computa-
tional model that integrates the speci�cation of control and
data 
ow by combining the notion of data 
ow graphs with
event driven process activation.

1. INTRODUCTION

Signal processing systems typically consist of both control
and data 
ow parts. The control 
ow often consists of reac-
tive control that implements higher protocol levels and 
ow
control that governs the operation of the data 
ow parts.
The data 
ow parts are used to model the computationally
intensive parts that are most e�ciently described as opera-
tions on in�nite streams of data samples.
Data 
ow systems [1] are described as networks of proces-

ses performing the signal processing and signals connecting
the ports of those processes. Static data 
ow requires the
processes to consume and produce �xed numbers of samples
(called rate) at their ports upon each activation. Dynamic
data 
ow denotes the case when data rates can be computed
dynamically during runtime.
In a variety of cases control and data 
ow parts can neit-

her be speci�ed nor analyzed separately since they are in-
teracting in a tight loop. We refer to these as mixed con-
trol/data 
ow systems. Packet-based transmission systems
are an example for this class of applications. There, per-
formance analysis (e.g. to measure the packet error rate)
requires to simulate a su�ciently large number of packets -
resulting in an even longer sequence of di�erent processing
states. Thus, one can neither replace the data 
ow part
with a simpli�ed (statistical) model nor can one assume
the state of the control 
ow portions to be static.
Functional aspects to be modeled are

� the existence of multiple (processing-) states

� event driven state transition

� generation of events by control and data-
ow subsy-
stems

� while in state X: perform F(X)

� upon state transition X ! Y: execute the procedure
P(X,Y)

� generate data in state X, consume it in state Y

For a most e�cient design process, the modeling techni-
que should be su�ciently abstract to model the functiona-
lity independent of a speci�c implementation and the con-
text of its use (! design reuse). In particular, it should
neither prejudice hardware nor software implementations.
Furthermore, it is necessary that the speci�cations result in
fully determinate behaviour to be able to analyze functional
models independent of a special implementation.
In the following section we will �rst review existing ap-

proaches to modeling and simulation of heterogeneous sy-
stems and describe their limitations. Next, we will intro-
duce a new computational model named process coordina-
tion calculus (PCC). Then, we will present an example of
the expressiveness of PCC speci�cations.

2. EXISTING APPROACHES

Basically, existing modeling techniques fall into three cate-
gories: those that are dedicated to handling data 
ow do-
minated systems, those that are best suited to model (reac-
tive) control systems, and techniques that are based on low
level implementation models. The latter do not ful�ll our
requirements with respect to modularity and abstraction.
The �rst class consists of blockdiagram based systems like

SPW [3], COSSAP [3] or DSPStation [4], and functional or
applicative data 
ow languages like Silage [5] or Lustre [6].
The bandwidth of these systems reaches from cycle based
models to such capable of handling dynamic data 
ow.
In principle, all these systems can be used to implement

control in the form of clocked �nite state machines. The
problem is that they do not support the notion of events.
These have to be emulated by the use of data 
ow signals.
Yet, the data 
ow signals have to be consistent [1], i.e. the
data rates1 of all signals connected to the FSM have to
be adjusted by (controlled) decimation or interpolation so
that exactly one value per FSM-activation is produced and
consumed. This makes modeling a tedious and ine�cient
task and leads to poor implementations [7]. Furthermore,
control oriented portions of a design become quite depen-
dent on the context of their use so that they are sensitive to
modi�cations of their environment - changing a single (dy-
namic) data rate can require major parts to be re-designed.

The lack of a notion of events leads to another problem.
Consider the case depicted in �gure 1. Two data 
ow pro-
cesses (A and C) are connected to a FSM. The FSM is suppo-
sed to be activated whenever one of the data 
ow processes
generates a data sample ('event') on � or 
. In data 
ow
semantics the FSM can

� either be activated when A and C have generated a �xed
and a priori known number of data samples or

1data rate = number of samples consumed (produced) per
activation
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Figure 1. scheduling problem
� check the number of data samples available on � and

 to decide which data sample to consume.

The �rst case either disables an immediate activation of the
FSM, i.e. E cannot be activated whenever only one sample
is available, or ignores one event while waiting for the other.
The second case - which is a variant of the so-called nonde-
terministic merge - is known to result in nondeterministic
behaviour [8].
Even the Ptolemy system [9], that has been designed

to deal with a heterogeneous mix of computational mo-
dels for means of co-simulation, has to face this problem.
In the Ptolemy environment di�erent models of computa-
tion (domains2) can communicate with each other through
so-called Wormholes. These embed another computational
model appearing at the outside as processes (Stars) of the
domain they are instantiated in. Executing an event driven
simulation in the context of an existing data 
ow domain
does not o�er a solution since the embedded event driven
simulation will have to appear as a data 
ow process to its
environment. Thus, we still have to face the same problems
as described above.
Textual [10] and graphical [11] languages based on �nite

automata exist for the speci�cation, simulation and imple-
mentation of a more control-oriented type of application.
Typical features include 
owchart editors to specify proce-
dures to be carried out upon a state transition and block-
diagram editors that can be used to instantiate and inter-
connect cycle based models (including non-FSM type com-
ponents). Specifying signal processing functionality with a
cycle based technique proved to be quite ine�cient when
it comes to modeling multi rate dynamic data 
ow systems
[12]. Furthermore, cycle based models strongly favour hard-
ware implementations since they are not well suited for soft-
ware code generation.
Codesign Finite State Machines (CFSMs) [13] o�er a mo-

del that prejudices neither hardware nor software imple-
mentation. They target at optimized implementations of
small reactive systems. The basic communication mecha-
nism - event broadcast with non-blocking write onto one-
place bu�ers - does not support the notion of data 
ow and
makes the behaviour of a CFSM network nondeterministic.
Since none of the existing models of computation ful�lls

the requirements stated in section 1 we developed a com-
putational model that allows to integrate the speci�cation
of control and data 
ow within one design environment. It
combines the notion of data 
ow graphs with event driven
process activation.

3. PROCESS COORDINATION CALCULUS

Computational models can often be described as hybrid spe-
ci�cations consisting of a host language and a coordination
language [2]. The coordination language is used to describe
a system as a network of functional units and de�nes the

2In the Ptolemy system the implementation of a domain is
called Universe.

semantics of communication and process activation. The
behaviour of the processes is described in the host language
- typically some kind of imperative procedural language.
In this sense, the process coordination calculus (PCC) de-

�nes a coordination language. It does not make assumpti-
ons on how a speci�c functionality has been implemented -
control-oriented processes may be directly implemented in
a high level language or by the use of a protocol compiler
or a state machine tool.

3.1. Primitive Elements

In contrast to existing modeling techniques that typically
o�er only one process type a PCC model consists of two
types of processes: data-driven and event-driven processes.
Both di�er in their semantics of activation. Basically, an
event-driven process must be activated immediately after
an event connected to one of its inputs has occured. In
contrast, a data-driven process can be activated when the
signals connected to its input ports are �lled with enough
data samples to ful�ll its (possibly data-dependent) activa-
tion condition.
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Figure 2. PCC primitives

The primitive elements of a PCC speci�cation are depic-
ted in �gure 2. PCC supports three signal types. Two
operations - Read and Write - are de�ned for any signal.
A stream is a FIFO bu�er of limited but a priori unknown

capacity. The number of initial values of a stream is indi-
cated by an integer number (cp. �g. 2).
Event queues are used to transmit events. An event is a 2-

tupel (V alue; Token) with Token 2 f0; 1g. Read(event) re-
turns V alue and resets Token (Token = 0). Write(event)
is valid if and only if Token = 0, i.e. an event must be pro-
cessed before a new event can be created on the same signal
line. Write(event) assigns to V alue and sets Token = 1.
A signal of type register is a one-place bu�er; assignment

operations overwrite the current content. To guarantee a
determinate behaviour in the case of concurrent Read and
Write operations two values are maintained for a register:
an actual value and a projected value. Read(register) re-
turns the actual value while Write(register) assigns to the
projected value. The actual value is assigned the projected
value before the next Read operation can take place.
Major goals in the design of PCC were to avoid overspe-

ci�cations, to overcome the need to anticipate implemen-
tation level characteristics at the system level, and to keep
functional models free from information on the context of
their use. In order to achieve this, we pursue a special ap-
proach to introducing determinism:

PCC speci�cation = process network N
+ scheduling constraints R

3.2. Data Flow Model

To be able to de�ne scheduling constraints we restrict the
capabilities of data 
ow processes so that the existence of
a bounded-length cyclic schedule (complete cycle), that re-
turns a data 
ow subgraph into its original state (distri-
bution of data samples), can be checked. Complete cycles
of shortest length are called minimum cycles. An element
qS(i) of the repetition vector ~qS gives the maximum number
of activations of the i-th data 
ow process within one mi-
nimum cycle. Static data 
ow [1] can be analyzed for the



existence of bounded-length cyclic schedules. Yet, it im-
poses obstacles when modeling complete signal processing
systems. PCC uses a more general data 
ow model called
bounded-rate multi-phase data 
ow (BMD) that contains
elements of models published by Buck [14], Bilsen [15], and
Zepter [16]. For the sake of simplicity we restrict ourselves
to single phase models for the remaining sections.
Using this model the stream-type ports of a data-driven

process may either be static or controlled. While a sta-
tic port has a constant data rate, the data rate of a con-
trolled port depends on the values of the tokens of a con-
trolling port. The controlling port has to be a static port
(rate rc � 1, �xed) of an integer data type. The control-
led port is associated with a 3-tupel <B; c;M>, where B
denotes an upper bound of the ports rate (r � B), c speci-
�es the controlling port, and M is a multiplicity such that
r =

Prc

i=1
M � jcji = B � p�(c) where p�(c) is a symbo-

lical variable (p�(c) 2 [0; 1]) and �(c) speci�es the signal
connected to port c. jcji denotes the i-th value at port c
during one activation. The maximum value jcji can assume
is jcjmax = B

rc�M
. Given that �c denotes the set of all

controlling ports in a PCC network, it is required that

8ci; cj 2 �c : �(ci) = �(cj) = s, jcijmax = jcjjmax := ŝ

Data 
ow analysis is necessary to compute the consi-
stency [1] and liveness of the graph. For each stream signal

s connecting two data driven processes �1 and �2 (�1
s
! �2)

we can write a balance equation

q(�1) � r(�1; s) = q(�2) � r(�2; s) (= n(s))

with q(�) being the number of activations of � per complete

cycle (n(s) = number of tokens

complete cycle
). In the case of controlled

ports we write r(�; s) = B�;s �p�(c). The graph is said to be
strongly consistent if there exists a non-zero solution ~q(~p)
for this set of balance equations regardless of the value of
the symbolical variables ~p. Strong consistency implies that
the graph will not have unbounded memory requirements
due to unbalanced production and consumption of data.
However, liveness and the existence of a bounded-length
schedule cannot be inferred. Those can be guaranteed if the
corresponding static graph (i.e. a graph were the rates of the
controlled ports are set to r(�; s) = B�;s) is free of deadlocks
(cp. [1]) and an additional set of conditions is full�lled. For
all data 
ow processes � where q(�) is a function of symbolic
variables q(�) = f(ps�;1 ; : : : ; ps�;N ) the following has to be
true.

8i 2 f1; : : : ;Ng : q(�) = K � ŝ�;i � n(s�;i); K 2 IN

We refer to these as control consistency conditions. An ex-
ample is presented in section 4.
In the context of PCC, the operation of a (BMD) data


ow graph consists of repetitive executions of minimum cy-
cles. Each data 
ow process �i is scheduled qS(i) times
(qS(i) = q(�i)j~p=~1) per minimum cycle; whether it is ac-
tually executed depends on the values of the controlling
signals.

3.3. Scheduling Constraints

A central point in our approach to modeling control and
data 
ow is the use of scheduling constraints to achieve
determinate behaviour. These constraints can be represen-
ted by a binary relation R that de�nes a (partial) orde-
ring of the qS(i) activations

3 of those data 
ow processes
�i that interfere with event driven processes. This orde-
ring decomposes the minimum cycle into Na phases with

3within a minimal cycle (non-overlapped schedule)

Na =
#activations(event driven subgraph)

minimum cycle
. We call R well for-

med if the resulting PCC speci�cation shows determinate
behaviour.
Let ND (NE) be the set of all data 
ow processes �i

(all event driven processes �j) of the process network N .
Di;j (j = 1:::qS(i)) denotes the j-th activation of data 
ow
process �i. The activation set A�i = fDi;1; :::;Di;qS(i)

g

comprises all activations of �i within one minimum cycle.
SD$E denotes the set of all data 
ow processes interfacing
event driven processes. The corresponding activation set is
AD$E =

S
8�i2SD$E

A�i .

Given these terms R can be de�ned as a binary relation
R � AD$E �AD$E .
We write x � y (x; y 2 AD$E) when (x; y) 2 R and

x 6� y when (x; y) =2 R.
A set of necessary conditions R must ful�ll is that it

has to be re
exive (8a 2 AD$E : a � a), antisymmetric
(8a; b 2 AD$E : (a � b ^ b � a ) a = b)), and transitive
(8a; b; c 2 AD$E : (a � b ^ b � c) a � c)).
Given that R was linear (8a; b; c 2 AD$E : (a � b _ b �

a)) it would de�ne a total ordering of the activations of
the data 
ow processes interfering with event driven sub-
graphs. To make the behaviour of a PCC process network
deterministic, we can apply weaker constraints presented in
[17]
Before we look at an example, let us �rst consider the

execution of event-driven processes. An event queue may
be annotated an integer number of cuts (cp. �g. 2) with
each cut delaying an event for the duration of one phase.
Event driven subgraphs that do not have at least one cut
in every directed cycle are rejected as ill-formed.
For execution, an event driven graph is made acyclic by

cutting at the designated cuts. Then, the processes are
sorted topologically in a scheduling list. Upon activation
this list is used to check each process whether events have
occured at its inputs. If so, the process will be activated.
Events emitted in the same phase appear as synchronous at
the inputs of an event driven process.
Consider a PCC speci�cation of the example depicted

in �gure 1. The data rates (speci�ed by the numbers
at the data 
ow ports) yield a repetition vector ~qS =

(qA; qB ; qC ; qD)
T = (1; 1; 2; 1)T . Without any scheduling

constraints the behavior is not determinate. Determinism
can be introduced by simply stating \execute A1 prior to
C1" with Xi denoting the i-th activation of process X. This
leads to Na = 4 and a schedule of the following shape:
f:::;A1;B1?; C1;B1?; C2;B1?;D1;B1?| {z }

minimum cycle

; :::g

Thus, the scheduling constraints do not specify the phase
in which B1 is executed (\B1?" indicates all possible posi-
tions within the minimum cycle).
A subset of R can be derived from the precedence con-

straints of the process network N . In the example shown
in �gure 1 constraints like C1 � D1 or C1 � D2 result from
those precedences. The remaining constraints that are nee-
ded to make R well constructed can be speci�ed in various
ways.
Tool support4 for the speci�cation of R will o�er a gra-

phical interface where the constraints take the form of edges
that connect nodes re
ecting the activations Dj;i 2 AD$E .
A template graph will be provided indicating the relation-
ships to be established with undirected arcs. Additionally,
one can select a speci�c scheduling policy to create neces-
sary constraints in a way that throughput or memory re-
quirements are optimized. Another option is the use of a

4Currently, a code generator named MOLIERE that uses
C++ based PCC speci�cations is under development at our
laboratory.



textual interface o�ering language primitives like asap(X),
alap(X), and Xi <= Yj that are evaluated sequentially.
The use of scheduling constraints results in a very e�cient

design style. Compared to modeling techniques that main-
tain a global notion of time - like cycle-based approaches
or classical discrete event systems with a real-valued model
of time - it is not required to anticipate details of an im-
plementation that do not in
uence its behaviour. Instead,
after specifying the 
ow of information using the intuitive
notation of a process network one has to de�ne at most the
total ordering of those data 
ow processes that interfere
with the event driven portions of the design (often even less
[17]) to obtain determinate behaviour. Since the number of
interfaces between control and data 
ow is typically small
compared to the total number of processes in a complete
system only very few constraints have to be speci�ed.
Apart from resulting in a more e�cient modeling techni-

que, one gains access to a broader design space by making
less assumptions on the total ordering of process activations.
Furthermore, the notation of scheduling constraints proves
generally helpful in the context of code generation. The
duality of process network N and scheduling constraints
R keeps the processes itself free from maintaining con-
text dependend information (scheduling, relative processing
speed). Thus, optimum reusability can be achieved.

4. EXAMPLE
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Figure 3. typical example

Figure 3 shows a structure often found in digital receivers.
This scenario contains all functional elements described in
section 1. The signal of type register written by the event-
driven process MODE CTRL is used by the data-driven process
BRANCH to detect the state of the receiver. In an initial phase
the data samples are directed to the ACQUISITION unit. The
corresponding stream is controlled by the signal connected
to the (static) output port a. When the acquisition phase is
�nished, AQUISITION emits two events. One is used to up-
date parameters (e.g. an estimated frequency o�set) that
will be read in a following state. Depending on the va-
lue of the second event a state machine inside MODE CTRL
will switch to either B-PSK or Q-PSK mode. The correspon-
ding process will then consume data samples received from
BRANCH until either an event generated by this process or an
external event will initiate a state transition.
In this example, data rates are indicated by numbers or

3-tupels at the respective ports. One might think of using
the set of data rates speci�ed in parentheses. Then, the
data-
ow graph would still be strongly consistent but the
control consistency condition described in section 3.2 is vio-
lated. In this case, BRANCH could switch from B-PSK to Q-PSK
after writing only two samples. While MERGE would still be
waiting to read one sample from B-PSK the tokens produ-
ced by Q-PSK could not be consumed and would require
unbounded memory to be queued.

5. CONCLUSION

The modeling technique presented in this paper combines
the expressive power of data 
ow systems with the notion of
event-driven control mechanisms. Since PCC is a coordina-
tion language it does not replace existing FSM or protocol
based methods and tools. Instead, it o�ers the possibility
to \plug in" reactive processes.
PCC supports an intuitive and modular design style.

Since the processes do not need to maintain a notion of
time, the reuse of functional models within another context
and the exploration of HW/SW tradeo�s is greatly sim-
pli�ed. Determinism is introduced by means of scheduling
constraints.
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