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ABSTRACT

Digital mobile systems are sensitive to power consumption,
chip size and costs. Therefore they are realized using �-
xed-point architectures, either dedicated HW or �xed-point
processors. On the other hand, system design starts from
a oating-point description. These requirements have been
the motivation for FRIDGE 1, a design environment for the
speci�cation, evaluation and implementation of �xed-point
systems. FRIDGE o�ers a seamless design ow from a oa-
ting-point description to a �xed-point implementation. Wit-
hin this paper we focus on the FRIDGE-concept of an inter-
active, automated transformation of oating-point programs
written in ANSI-C into �xed-point speci�cations, based on
an interpolative approach. Since HW and SW implementa-
tions of the same functionality in general require di�erent
�xed-point speci�cations, the design time reductions that
can be achieved by using FRIDGE make it a key component
for an e�cient HW/SW-CoDesign.

I INTRODUCTION

Digital system design especially for mobile applications is
characterized by ever increasing system complexity that has
to be implemented within reduced time, resulting in mini-
mum costs and short time-to-market. These characteristics
call for a seamless design ow that allows to perform the
suitable design steps on the highest level of abstraction.
For mobile systems, the design has to result in a �xed-

point implementation, either in HW or SW. This is due to
the fact that mobile systems are sensitive to power consump-
tion, chip size and price per device. Fixed-point realizations
outperform oating-point realizations by far with regard to
these criteria.
Fixed-point system design requires a speci�c design ow

that enables maximum abstraction for all design steps, as
illustrated by �g.1
Algorithm design starts from a oating-point description.

This abstraction from all �xed-point e�ects such as quan-
tization noise and overow problems allows an evaluation of
the algorithm space, reducing the algorithmic alternatives
before analyzing the quantization e�ects on the algorithmic
behavior. In addition, it enables a maximum design reuse
since the most general description of a functionality can be
used (there is only one adder, not several adders handling
di�erent input and output wordlengths).
The transformation to the �xed-point level requires to as-

sign a �xed wordlength and a �xed exponent to every ope-
rand, while the control structure and the operations of the
oating-point program remain unchanged (the input and ou-
tput parameters of the adder have to be determined). The
�xed-point model is used to analyze the bit-true algorithmic
system performance.

1Fixed-point pRogrammIng DesiGn Environment

target system

Idea

  floating-point-
algorithm

quantization

fixed-point
algorithm

ok?
No

Yes

No

   architecture
spec. description

Yes

No

al
go

rit
hm

ic
al

 le
ve

l
im

pl
em

en
ta

tio
na

l l
ev

el

fix
ed

-p
oi

nt
flo

at
in

g-
po

in
t

ok?

code generation

ok?

Yes

OFDM receiver:
frequency sync. unit

5 weeks

3 weeks

design time

Figure 1. Fixed-point design process

To move to the implementational level, the �xed-point al-
gorithm has to be transferred into the best suited target
description, either using a HDL or a programming language
(now it has to be decided how to implement the adder, while
the bit-true behavior is completely speci�ed).
Since both transformations reduce abstraction, they are

not unique but address a complex design space. Within
this paper we focus on the �rst transformation, converting a
oating-point description into a �xed-point description. Alt-
hough performing a transformation on the algorithmical le-
vel, even here one can no longer abstract from the target
system. This is due to the fact that HW and SW put di�e-
rent constraints on the �xed-point speci�cation: for SW, the
wordlength is already �xed by the processor and the mini-
mization of shift operations is a concern, while for HW the
wordlength is free and its minimization is an issue. A typi-
cal HW/SW-CoDesign therefore requires multiple transfor-
mations, depending on di�erent partitioning constellations.
Existing approaches (see sec.2) require a manual oat-to-
�xed transformation, for more complex designs accounting
for 50% or more of the design time once the oating-point
algorithm is �xed [1]. Therefore, an automated transfor-
mation from the oating-point to the �xed-point level is an
enabling feature for HW/SW-CoDesign.
This constellation motivated FRIDGE, an interactive de-

sign environment for the speci�cation, emulation and im-
plementation of �xed-point systems. The basic concepts of
FRIDGE are presented in the following. After a brief over-
view of related work (sec.2), in sec.3 we describe the inter-
polative approach, which is a core functionality of FRIDGE.
The realization of the interpolative concept and the resulting
capabilities of FRIDGE are subject of sec.4.



II RELATED WORK

Several design environments allow to specify a �xed-point
algorithm, starting from a oating-point description of the
system. Two concepts exist:

1. block diagram based algorithm speci�cations where
blocks represent the functionality and signals the data
ow among these blocks. The designer assigns informa-
tion about wordlength and the location of the binary
point to the signals, but the blocks' functionalities are
�xed [2,3,4]. The blocks' black box behavior is a se-
vere limitation of these approaches. As a consequence,
functionalities are limited to blocks with the �xed-point
behavior completely speci�ed by the interface, such as
adders, multipliers, etc. For more complex functionali-
ties, e.g. �lters, di�erent �xed-point behaviors require
to manually exchange the block.

A design bottleneck even as important as the black box
behavior is that a complete �xed-point speci�cation re-
quires to specify all signals. For most concepts, this calls
for a manual assignment. Recently, Sung [5] presented
a concept to reduce the e�ort of a manual annotation
based on exhaustive simulations to determine the �xed-
point format of all non-speci�ed signals. Long system
response times restrict this concept to only a very few
non-speci�ed signals. Since typical designs often include
1000 signals or more [6], manual assignment is still ne-
cessary for most of the signals.

2. textual descriptions where the system's functionality is
described using a programming language. Examples in-
clude DFL [7] as well as C++-based concepts [8]. Both
concepts allow a �xed-point instantiation of variables at
declaration time, i.e. a variable keeps a unique �xed-
point representation throughout the complete program.
As for the block diagram concepts, for a �xed-point al-
gorithm speci�cation all variables have to be annotated
manually.

III THE INTERPOLATIVE APPROACH

In the following we restrict ourself to a textual representation
of an algorithm. This does not come as a limitation since
most block diagram based design environments include code
generators that transfer the block diagram speci�cation into
(mostly C) code. Note that all concepts can be applied to
block diagram descriptions as well.
A �xed-point speci�cation of an algorithm requires to as-

sign a three tuple <wl,iwl,s> to every operand, with wl the
wordlength, iwl the number of integer bits and s the sign
(which might be unsigned or two's complement). One can
think of alternative representations which can be transferred
into the presented format. See �g.2 for the representation.
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Figure 2. Fixed-point data type speci�cation

As pointed out above, the manual annotation of all ope-
rands as required by the existing concepts is hardly accep-
table even for a single transformation. It is even more of
a design bottleneck for HW/SW-CoDesign where iterative
transformations become necessary.
As a consequence, we propose an alternative design ow,

denoted the interpolative approach which is illustrated
by �g.3.
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Figure 3. Design ow based on interpolation

In addition, the designer assigns �xed-point informa-
tion to some �xed-point operands that are critical to
his design or already known with their �xed-point speci-
�cation (e.g. the interface format of a system). This re-
sults in a hybrid speci�cation, where some operands are
already �xed-point, while others remain oating-point.

2. Simulation:
Next, the hybrid speci�cation is simulated. This allows
the designer to check whether the locally annotated spe-
ci�cation still meets the design criteria. If not, a modi�-
cation of the local annotations or even the oating-point
algorithm becomes necessary.

3. Interpolation:
Once the annotated program matches the design cri-
teria, the remaining oating-point operands are trans-
ferred to �xed-point operands by interpolation. 'Inter-
polation' expresses the determination of the �xed-point
parameters of the non-speci�ed operands from the in-
formation that is inherent to the annotated operands.

The interpolation concept is based on three key ideas:

(a) Worst case estimation:
The principle can best be illustrated by an example:
a = b+ c
For a, sign and su�cient integer wordlength depend
on the range that a can take. A worst case range
estimation is possible, given the range information
for b and c: minfag = minfbg + minfcg, maxfag
= maxfbg + maxfcg. For the fractional word-
length, no information is lost if fwl(a) = maxffwl(b),
fwl(c)g.

(b) Global annotations:
While local annotations express �xed-point informa-
tion for single operands, global annotations describe
restrictions that have to be matched throughout the
complete design.
For di�erent targets, di�erent global restrictions ap-
ply. For SW, the functional units to perform speci-
�c operations are already de�ned. Consider a 16x16
bit multiplier, writing to a 32 bit register. A global
annotation informs the interpolator that the word-
length of a multiplication operand is not allowed to
exceed 16 bit. The result's wordlength must not ex-
ceed 32 bits, what is guaranteed by the operation
itself.
For an ASIC implementation, no �xed wordlength
constraints exist for speci�c arithmetic units. So
global annotations might inform about a maximum
wordlength max that shall not be exceeded. Once
the interpolation would result in a wordlength ex-
ceeding max, it is reduced to default.
Global annotations are the enabling feature for an
e�cient HW/SW-CoDesign. As already pointed out
above, although starting from the same oating-
point algorithm, in general di�erent �xed-point spe-
ci�cations are necessary. If it is not known which



parts of the design to realize in HW and which parts
in SW, global annotations allow to generate the
di�erent �xed-point speci�cations by exchanging a
single �le.

(c) Designer support:
If an interpolation is not possible for the complete
design since the annotated information is not su�-
cient, the interpolator can inform about the location
where it is impossible to continue and can ask for
additional information.

The interpolation supplies a fully annotated program,
where a unique �xed-point data type is assigned to each
operand. Therefore, the e�ects of local and global an-
notations become completely visible to the designer.

4. Simulation:
Since the global annotations might have changed the
algorithmic performance of the speci�cation, the (now
completely de�ned) �xed-point program has to be si-
mulated again. If it is found that the system does not
ful�ll the design criteria, the initial description might be
modi�ed by adding annotations.

The interpolative design ow comes with several advanta-
ges compared to existing approaches:

� design time reduction: the designer can concentrate
on the speci�cations which are important to his design
while the e�ects to the remaining parts are evaluated in
an optimum way by the interpolator.

� designer's control: the designer fully controls the trans-
formation process since he can assign all information
(either locally or globally) that is crucial for his de-
sign. The interpolation makes visible the e�ects on
those parts of the design that have not been speci�ed
explicitly by local annotations. This simpli�es iterative
modi�cations by the designer when he wants to assign
additional annotations.

� Design space evaluation: the evaluation of di�erent
�xed-point speci�cations becomes very easy since only
some annotations have to be exchanged while the re-
maining speci�cations are automatically derived from
this information. This is extremely useful especially for
HW/SW-CoDesign, where di�erent targets must be ad-
dressed within short time.

IV THE FRIDGE FRAMEWORK

FRIDGE is a complex and most advanced design environ-
ment for the speci�cation and code generation for �xed-point
architectures. See the illustration of the FRIDGE framework
in �g.4
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Figure 4. The FRIDGE framework

Within this paper we focus on the transformation from
the oating-point algorithm to the �xed-point algorithm,

which is based on the interpolative as described in sec.3. The
FRIDGE-speci�c features of this concept shall be described
in more detail.

4.1. �xed-C

The input speci�cation of FRIDGE is a oating-point pro-
gram written in ANSI-C. Most block diagram based design
environments come with a C-code generator which allows
to transfer these speci�cations into ANSI-C as well [2,4,7,9].
ANSI-C o�ers no e�cient support for �xed-point data types
(for a detailed discussion see [5]). Since the interpolative
approach calls for the possibility of a hybrid speci�cation of
the algorithm, the ANSI-C standard has been extended to
�xed-C by introducing two parameterizable �xed-point data
types, named �xed and Fixed.

1. �xed a; �b; c[8]
A variable is declared to be of data type �xed, but no in-
stantiation is performed at declaration time. �xed allows
to handle pointers and arrays as known from ANSI-C.
Example: a =�xed(wl,iwl,sign,cast,*b);
a receives data type <wl,iwl,sign>, the value of *b is
casted according to cast. Prior instantiations of a are
overwritten. A data type instantiation of a �xed varia-
ble is performed only by an assignment. Assignment-
time instantiation is motivated by the speci�c design
ow: transformation starts from a oating-point pro-
gram, where the designer does not care about �xed-
point requirements when he speci�es an assignment, ac-
tually he uses the oating-point description to abstract
from these problems. If the language would require a
declaration-time instantiation (as for the existing con-
cepts [7,8]), two possibilities exist:

� the initial instantiation covers all possible assign-
ments, so no context speci�c �xed-point speci�ca-
tion would be possible, or

� variables are renamed, with a context speci�c in-
stantiation at declaration time. This comes with
severe problems for conditional and loop structu-
res. Even as important, to simplify code analysis
and maintainance it is highly desirable to keep the
oating-point variable names for the �xed-point pro-
gram.

As a consequence, assignment-time instantiation is the
method of choice for an e�cient design ow.

2. Fixed<wl,iwl,sign> d; �e; g[8] (Forced-�xed)
Di�erent to data type �xed, FRIDGE performs a data
type check for every assignment to a Fixed variable.
Example: d = fixed(7; 4; s; sr; �e);
If (wl 6= 7) _ (iwl 6= 4) _ (sign 6= s), (so the right hand
side does not match the required format) the output
depends on the selected mode:

� warning mode: FRIDGE informs the designer ab-
out the mismatch but continues with assigning the
right hand side to variable d (so d is of data type
< 7; 4; s >). Except for the warning there is no dif-
ference whether d has been declared Fixed or �xed.

� forced mode: FRIDGE interrupts execution and
calls for annotations that guarantee the correct as-
signment to d.

Fixed is the data type of choice for variables that serve
as an interface to other functionalities. Therefore Fixed
is the enabling feature for concurrent engineering.

Annotations are not limited to �xed-point parameters such
as wl; iwl and sign, but it is possible to assign information
about ranges, mean and variance of a speci�c operand. The
�xed-point parameters can be derived from these informati-
ons.



4.2. HYBRIS: HYBRId Simulator

HYBRIS allows a bit-true simulation of �xed-C (and there-
fore hybrid) programs. Special features of HYBRIS allow to
collect additional information for user-speci�ed operands:

� identify the range

� identify mean and variance

� display value distribution using a histogram, supplying
valuable information for local annotations.

� detect overows for �xed-point operands: either inter-
rupt simulation or generate a statistic. This is extremely
helpful for analyzing the e�ects of local annotations.

HYBRIS can easily be integrated into all C-based simula-
tion environments. This allows to enhance existing concepts
using the advanced capabilities of FRIDGE: stimuli genera-
tion, post processing and performance analysis can be done
by the old environment, while HYBRIS handles the proces-
sing part of the design.

4.3. ICEPACK:
Interpolative CodE Processing PACKage

ICEPACK, the interpolator integrated in FRIDGE, is based
on the interpolation principles as described in sec.3. A more
detailed description can be found in [10]. Some capabilities
of ICEPACK shall be highlighted by the following examples.

� sequential code:

float b = 2.75; fixed b = fixed(4,2,u,sr,2.75);

float c = 5.0; fixed c = fixed(3,3,u,sr,5.0);

float a; fixed a;

a = c - b; a = fixed(4,2,u,sr,c-b);

For constants, ICEPACK determines the minimum re-
quirements on iwl, wl and sign that are necessary to
represent the data without loosing any information. By
interpolation, ICEPACK determines range (and there-
fore iwl and sign) and su�cient fractional wordlength
fwl of a. (For the example above, ICEPACK would have
analyzed that c� b is a constant and can be replaced).

� conditional structures:

float b = 2.75; fixed b = fixed(4,2,u,sr,2.75);

float c = 5.0; fixed c = fixed(3,3,u,sr,5.0);

float a; fixed a;

if (condition) if (condition)

a = c - b; a = fixed(4,2,u,sr,c-b);

else else

a = 1.875; a = fixed(4,1,u,sr,1.875);

d = a; d = fixed(5,2,u,sr,a);

Depending on which branch is executed, a is instantia-
ted di�erently. Before using a as an operand following
these branches, ICEPACKmerges the information inhe-
rent to all possible assignments so that no information
can get lost.

� loop constructs:

float b[2] = fixed b[2] =

{2.75,-3.5}; {fixed(4,2,u,sr,2.75),

fixed(4,3,s,sr,-3.5)};

float a; fixed a;

int wl_a[] = {5,3};

int *pwl_a = wl_a;

int iwl_a[] = {3,1};

int *piwl_a = iwl_a;

a = 0; a = 0;

for (i=0;i<2;i++) for (i=0;i<2;i++)

a = a + b[i]; a = fixed(*pwl_a++,*piwl_a++,

s,sr,a + b[i]);

ICEPACK analyzes the number of iterations. This is
not limited to for-loops but covers while and do-while
loops as well. For each iteration it determines the ne-
cessary �xed-point parameters separately. If ICEPACK
identi�es that the parameters are not equal for all ite-
rations, it automatically generates an array that is ac-
cessed via a pointer. Notice the advantage of iteration
speci�c instantiations that would be impossible with the
declaration-time instantiation principle.
ICEPACK comes with speci�c capabilities for loops of
data dependent length by combining 'loop' and 'condi-
tional' approaches (see [10]).

� Pointers and static variables:
ICEPACK includes a comprehensive analysis for poin-
ters and static variables. For a more detailed description
see [10]. V SUMMARY

Digital system design especially for mobile applications re-
quires to transfer oating-point programs into �xed-point
programs. State-of-the-art approaches make it necessary
to completely annotate �xed-point speci�cations to all ope-
rands manually, what has been identi�ed to be error prone
and time consuming. Complete manual annotations are
hardly acceptable for traditional designs but become an un-
acceptable situation for HW/SW-CoDesign where the neces-
sary evaluation of the design space requires multiple oat-
to-�xed transformations. This has motivated the construc-
tion of FRIDGE, an interactive �xed-point code generation
environment. Within this paper we concentrated on the in-
terpolative approach which is a key feature of FRIDGE. The
interpolative approach allows to generate a �xed-point spe-
ci�cation starting from local annotations for speci�c ope-
rands of the oating-point program. This became possible
by introducing �xed-C, ANSI-C extended by two �xed-point
data types. E�cient HW/SW-CoDesign is enabled by dif-
ferent algorithm transformation strategies that can be spe-
ci�ed by target speci�c global annotations. These features
in combination with target speci�c implementation strate-
gies make FRIDGE a complex design environment for the
speci�cation, evaluation and implementation of �xed-point
algorithms. This environment can be easily integrated into
existing C-based design environments.

REFERENCES

[1] T. Gr�otker, E. Multhaup, and O. Mauss, \Evaluation
of HW/SW Tradeo�s Using Behavioral Synthesis," in
Proc. of ICSPAT '96, (Boston), Oct. 1996.

[2] Cadence Design Systems, 919 E. Hillsdale Blvd., Foster
City, CA 94404, USA, SPW User's Manual.

[3] Angeles Systems, VANDA-Design Environment for
DSP Systems, 1994.

[4] Mathworks Inc., Simulink ReferenceManual, Mar. 1996.
[5] W. Sung and K. Kum, \Word-Length Determination

and Scaling Software for a Signal Flow Block Diagram,"
in Proceedings of ICASSP '94, pp. II 457{ 460, Apr.
1994.

[6] P. Zepter, T. Gr�otker, and H. Meyr, \Digital Recei-
ver Design using VHDL Generation from Data Flow
Graphs," in Proc. 32nd Design Automation Conf., June
1995.

[7] Mentor Graphics, 1001 Ridder Park Drive, San Jose,
CA 95131, USA, DSP Station User's Manual.

[8] S. Kim, K. Kum, and W. Sung, \Fixed-Point Optimiza-
tion Utility for C and C++ Based Digital Signal Pro-
cessing Programs," in Workshop on VLSI and Signal
Processing '95, (Osaka), pp. 197{206, Nov. 1995.

[9] Synopsys, Inc., 700 E. Middle�eld Rd., Mountain View,
CA 94043, USA, COSSAP User's Manual.

[10] M. Willems, V. B�ursgens, and H. Meyr, \FRIDGE: Tool
Supported Fixed-Point Code Generation from Floating-
Point Programs Based on An Interpolative Approach,"
in DAC, 1997. submitted for publication.


