
ABSTRACT

This paper describes the application of array optimization
techniques to improving the near-field response of an arbitrary
microphone array. The optimization exploits the differences in
wavefront curvature between near-field and far-field sound
sources and is suitable for reverberation reduction in small
rooms. The optimum near-field beamformer provides increased
array gain over that obtained from a uniformly weighted delay-
and-sum beamformer.

1. INTRODUCTION

Conventional analysis and synthesis techniques for micro-
phone arrays are based on the simplifying assumption that all
acoustic sources are located far from the array. In this case wave-
front curvature can be neglected and all waves impinging upon
the array are assumed to be planar. This assumption simplifies
analysis and provides a realistic framework for certain applica-
tions [1].

The assumption of plane-wave propagation results in
errors, however, when speech-bandwidth arrays are deployed in
small rooms. Since the size of an array is usually related to its
operating wavelength, the aperture of a speech-bandwidth array
can be of the same order of magnitude as the distance to the
sound source. In such cases, the sound source is located in the
array’s near field and wavefront curvature can be detected within
the array’s aperture. This fact has been considered in the recent
design of broadband near-field microphone arrays [2]. 

For a sound source in a reverberant room, the direct wave-
front from a near-field source appears more curved than the
wavefronts from reflections. Figure 1 shows an acoustic source
located in the near field of a linear array in a reverberant room.
Wall reflections are represented by the image sources behind the
reflecting surfaces. Since the image sources are farther from the
array than the original sound source, the corresponding wave-
fronts are less curved when observed at the array location.  

By focusing an array on a near-field point, it is possible to
provide a certain degree of range discrimination. This discrimi-
nation permits the array to reduce the effects of reflected wave-
fronts arriving from the same angle but a greater distance than
the original sound source. 

This paper describes an optimization for the near-field
response of a microphone array that attempts to improve perfor-
mance in reverberation. The optimization increases the array’s
rejection of reverberation based on differences in wavefront cur-
vature. Using an appropriate mathematical description of the
near-field performance permits existing techniques to be applied

to the array optimization.

2. ARRAY OPTIMIZATION
2.1. Gain Optimization

The gain  provided by an arbitrary, -element array
at a frequency  can be expressed in matrix notation as [3]

. (1)

where  is the desired-signal correlation matrix,  is
the noise correlation matrix,  is the vector of complex
microphone weights and the superscript  denotes the conju-
gate transpose. The matrices  and  have been nor-
malized to the total signal and noise powers, respectively. 

Equation (1) can be recognized as the ratio of two quadratic
forms. Consequently, there exists a vector  that maxi-
mizes the value of . Provided that  is non-singular,

 is given by

(2)

where  is the signal propagation vector defined such that

and  is an arbitrary complex constant. Inclusion of the com-
plex constant  implies that the optimum weight vector is only
unique to within a constant scale factor. In fact, it has been

Figure 1 Acoustic source in the near field of a linear array in a
reverberant room. Reflected wavefronts are less curved than
the direct wavefront due to the longer acoustic path travelled.
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shown that the optimum weight solutions for several different
processing strategies can all be expressed using equation (2) [3].
The resulting maximum array gain  is 

. (3)

Specific solutions for  are determined by the exact
values of the signal and noise correlation matrices,  and

. The specific case of interest in this paper is that for
which little detailed information is available about the noise
characteristics. In such cases, it is often most convenient to
assume a spherically isotropic noise field. That is, assume a
noise correlation matrix  

(4)

where the element corresponding to the  row and  column
is given by 

. (5)

In this equation  is a position vector representing the arbitrary
location of microphone  and  is the wavenumber. Thus,

 is the spatial separation between microphones  and
.

Optimum array designs obtained with this technique can be
classified according to the microphone spacing. Conventional
array behavior is observed for microphone spacing that is large
with respect to the wavelength . For small microphone spacing
(less than ) optimum array designs are super-directive pro-
ducing large increases in gain at the expense of error sensitivity.

For example, when the distances between the microphones
 are an integer multiple of  (as in the case of a uni-

formly spaced linear array) then  reduces to an 
identity matrix. The optimum microphone weights are then
readily obtained

. (6)

That is, the optimum microphone weights are equal to the scaled
signal propagation vector. The optimum array gain is then

. (7)

For an array steered to a far-field source this reduces to the famil-
iar result for conventional, delay-and-sum beamforming

. (8)

When the microphone spacing is less that , the opti-
mum weights are not simply a scaled version of the signal propa-
gation vector. Instead, the optimum weights include a phase and
amplitude adjustment at each microphone in addition to that
required for wavefront alignment. It has been shown that the the-
oretical limit for super-directive array gain is  and is achieved
for an endfire linear array as the microphone spacing approaches
zero. This beamformer, however, suffers from an extreme sensi-
tivity to errors and is of little practical use. Thus, array optimiza-
tion for practical applications must also include a constraint to

limit the array’s sensitivity to such errors. 

2.2. Constrained Optimization

To reduce the beamformer sensitivity to errors, it is neces-
sary to constrain the weight optimization in such a way that lim-
its the array’s sensitivity to errors. This is accomplished most
straight forwardly by adding a diagonal component to the noise
correlation matrix . That is, define  to be 

. (9)

where  is a small positive, real constant which is unique for
each frequency. The strength of the constraint is controlled by
the magnitude of . Setting  to a large value implies that
the dominant noise is uncorrelated from microphone to micro-
phone. When uncorrelated noise is dominant, the optimum
weights are those of a conventional delay-and-sum beamformer.
Setting , of course, produces the unconstrained opti-
mum array.

The sensitivity of an array to uncorrelated errors is indi-
cated by a parameter known as white noise gain . It is cal-
culated as the value of array gain assuming that the dominant
noise is uncorrelated from microphone to microphone (i.e.

). That is [4]

.

This parameter represents the array gain against uncorrelated
noise therefore a large value of  means that the array is
less sensitive. Unfortunately, there is no simple relationship
between the constraint parameter  and the resulting value of
white noise gain . Designing an array for a prescribed
value of  requires an iterative procedure.

This constrained optimization approach has been used suc-
cessfully in the design of practical super-directive microphone
arrays for hearing-aid applications [6].

3. NEAR-FIELD ARRAY OPTIMIZATION
3.1. Unconstrained Optimization

Array gain optimization may also be applied to the near-
field response of an array. Apply of this technique simply
requires a suitable choice be made for the matrices  and

.

In a reverberant environment, since the direct wavefront
travels the shortest distance to the array it possesses the smallest
radius of curvature. Waves which have undergone multiple
reflections possess larger radii of curvature. As the distance trav-
elled by the reflected wave increases, the reflected waves may be
accurately modeled as plane waves. Of course, the reverberant
field is composed of waves propagating in many different direc-
tions. Thus, a suitable model for reverberation is a spherically
isotropic noise field. Insofar as the reflected wavefronts appear
less curved than the direct wave, this optimization should
increase the ratio of direct to reverberant energy at the output of
the array.

For a point source located at  in the near field of an 
element array, the signal propagation vector is 
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where the factor  is included to normalize the array
response to that of a single omnidirectional microphone located
at the coordinate origin. Using this normalization, the trace of
the resulting  matrix equals

,

so the numerical value of the near-field response approaches the
far-field response as the source distance increases. 

Since the interference assumed is spherically isotropic the
definition of  is identical to that in (4) and (5). Conse-
quently, the matrix  is invertible and the optimum weight
vector given by equation (2). 

As before, when the distance between the microphones
equals an integer multiple of a half-wavelength then the noise
correlation matrix reduces to an  identity matrix and the
optimum microphone weights are equal to the signal propagation
vector. That is

. (10)

Note that, in contrast to the far-field case, the optimum
microphone weights are not of equal magnitude. Instead, the
magnitude is inversely proportional to the distance from the
microphone to the focal point. Thus, to achieve the maximum
near-field array gain those microphones which are closest to the
focal point must be given the highest weighting. microphones
which are further from the focal point are given the lowest
weighting and contribute less to the array output. This is intu-
itively appealing since signals from the closest microphones will
have the highest ratio of near/far energy prior to beamforming.

For microphone spacing much less that  the optimum
weights display a super-directive behavior similar to that
observed in the far-field. As in the far-field case, substantial
increases in the optimization index are produced at the expense
of sensitivity to wavefront perturbations and other types of
uncorrelated errors. Thus, practical designs must employ con-
strained optimization to limit the error sensitivity.

4. OPTIMIZATION RESULTS

Although the optimization method applies to an arbitrary
array, for illustrative purposes a linear array consisting of 15 uni-
formly spaced microphones will be used.

4.1. Half-wavelength Spacing

The optimum near-field weights and corresponding array

gain were calculated for an array with a microphone spacing of
. For an array of total length , the extent of the near field

region  can be defined by [5]

.

For the present example, this means that the near field extends to
a distance of  where  is the array length.

Data were calculated for a regular grid of points over a
square region surrounding the array. Position is described by the
rectangular coordinates . The square region of interest is
bounded by  and . This region is suf-
ficient to include most of the near-field while providing suffi-
cient detail in the plots. In all the plots to follow, the location
coordinates are normalized to the array length and the array is
located along the  axis from  to . 

The effect of the optimization is illustrated in Figure 2
where  is plotted as a function of near-field position. As
seen in the figure, at large distances, the near-field gain
approaches t he  far- f ie ld  ga in  ( i . e .

). For sources located at the ref-
erence point (coordinate origin) the array performance
approaches that of a single microphone (i.e. 0 dB). 

For positions in the immediate vicinity of the individual
microphones, the gain is high due to the optimal use of the clos-
est microphone. As the focal point approaches a microphone
location, all other microphones are turned off to limit the intro-
duction of reverberation.

To highlight the impact of the optimization, the difference
between  and the gain obtained from a uniformly
weighted delay-and-sum beamformer is illustrated in Figure 3.
The difference is positive for all locations although the improve-
ment is small (less than 1dB) for distances greater than approxi-
mately . The largest improvements are noted for positions
close to the microphone positions further highlighting the fact
that uniform weighting is not optimal for near-field sources.   

4.2. Spacing Less than Half-wavelength

For microphone spacing less than , the optimization
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Figure 2   obtained in the near-field of a 15 element lin-
ear array with microphone spacing of . The near field
extends to a distance of .
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procedure produces a super-directive array design with unaccept-
ably high sensitivity to errors. To avoid this, the constraint of
equation (9) was used for arrays with microphone spacing less
than . For the data presented here, the parameter  was
adjusted to provide a white noise gain of 0 dB. This should pro-
duce a beamformer whose sensitivity to errors is no greater than
that of a single microphone.

The constrained optimization was applied to the design of
an array with microphone spacing of . In this case, the near
field extends to a distance of . The improvement in perfor-
mance compared to a uniformly weighted delay-and-sum beam-
former is illustrated in Figure 4. 

In this case, the impact of the optimization is greater and
extends over a larger near-field region than for the case of 
microphone spacing. As before, the improvement is largest in the
immediate vicinity of the microphones. As the distance
increases, the optimum near-field gain rapidly approaches the
value of the optimum far-field gain. Despite the equivalence in
gains, however, the optimum near-field weights are distinct from
the optimum far-field weights. That is, correcting the phase and
amplitude of the optimum far-field weights for wavefront curva-

ture will not, in general, produce the optimum near-field weights.
This is illustrated in Figure 5 where the gains provided by both
the near-field and far-field constrained optimum weights are
shown for various distances in the broadside direction within the
nearfield of a 15 element linear array. This figure shows that the
optimum near field beamformer (curve NF) provides the highest
gains. It also illustrates the errors made by neglecting source dis-
tance when using an optimum far-field beamformer (curve FF).
Finally, compensating the amplitude and phase of the optimum
far-field weights for wavefront curvature (curve FF Comp.) pro-
vides some improvement but the array gain is still less than the
optimum near-field gain. 

5. CONCLUSIONS
This paper describes a method for optimizing the near-field

response of an arbitrary microphone array. Exisiting array opti-
mization techniques are used to improve the ratio of near-field to
far-field response. The optimum near-field weights are shown to
provide increased gain for near-field sources when compared to a
delay-and-sum beamformer with uniform microphone weights. 

REFERENCES
1.  Flanagan, J.L., Johnston, J.D., Zahn, R. and Elko, G.W., 

“Computer-steered microphone arrays for sound transduction 
in large rooms”, J. Acoust. Soc. Am., 78, 1985, pp. 1508-
1518.

2.  Kennedy, R.A., Abhayapala, T., Ward, D.C. and Williamson, 
R.C., “Nearfield Broadband Frequency Invariant Beamform-
ing”, Proc. IEEE ICASSP 1996, pp. 905-908.

3.  Monzingo, R.A. and Miller T.W., Introduction to Adaptive 
Arrays, John Wiley and Sons, 1980, pp. 78-105.

4.  Cox, H. Zeskind, R.M. and Owen, M.M., “Robust Adaptive 
Beamforming”, IEEE Trans. ASSP, vol. ASSP-35, Oct. 1987, 
pp. 1365-1375.

5.  Steinberg, B.D., Principles of Aperture and Array System 
Design, John Wiley and Sons, 1976, p. 12.

6.  Kates, J. M., and Weiss, M.R., “A comparison of hearing-aid 
array processing techniques”, J. Acoust. Soc. Am., vol. 99, 
May 1996, pp. 3138-3148.

Figure 3 Difference between  and the gain provided by
uniform delay-and-sum beamforming  for a 15 element
linear array with  microphone spacing. The near field
extends to a distance of .

Gopt f( )
Gu f( )

λ 2⁄
3.5L

λ 2⁄ ε f( )

λ 4⁄
1.75L

Figure 4 Difference between  and the gain provided by
uniform delay-and-sum beamforming  for a 15 element
linear array with  microphone spacing. The near field
extends to a distance of 
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Figure 5 Gain provided by optimum weights at various dis-
tances in the broadside direction of a 15 element linear array with

 microphone spacing. Gains are shown for near-field opti-
mum (NF), far-field optimum (FF) and far-field optimum com-
pensated for wavefront curvature (FF Comp.).
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