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ABSTRACT

Conventional time-delay estimators exhibit dramatic
performance degradations in the presence of multipath
signals. This limits their application in reverberant
enclosures, particularly when the signal of interest is
speech and it may not possible to estimate and com-
pensate for channel e�ects prior to time-delay estima-
tion. This paper details an alternative approach which
reformulates the problem as a linear regression of phase
data and then estimates the time-delay through min-
imization of a robust statistical error measure. The
technique is shown to be less susceptible to room re-
verberation e�ects. Simulations are performed across a
range of source placements and room conditions to illus-
trate the utility of the proposed time-delay estimation
method relative to conventional methods.

1. INTRODUCTION

The relative time-delay associated with a signal source
and a pair of spatially separated sensors forms the ba-
sis of many microphone-array algorithms; passive-source
localization and beamformer steering are typical. The
prevalent technique for time-delay estimation (TDE)
is based upon Generalized Cross-Correlation (GCC) in
which the delay estimate is obtained as the time-lag
which maximizes the cross-correlation between �ltered
versions of the received signals [1]. A variation on
the GCC TDE involves the minimization of a weighted
least-squares (LS) criterion in the spectral phase do-
main [2]. In the presence of single-path propagation,
maximum likelihood (ML) versions of the GCC- and
LS-based TDE's have been well studied and shown to
be practical and to obtain theoretical bounds. However,
these methods exhibit dramatic performance degrada-
tions in the presence of simple multipath channels (a
few echoes) [3] as well as the more complex scenario of a
reverberant room (a very large number of closely spaced
echoes, the equivalent of nearly-at multiplicative noise
in the spectral domain) [4]. These shortcomings limit
their applicability for time-delay estimation in realistic
enclosures.
Several methods are available for improving TDE per-

formance in multipath environments. These include in-
corporating sub-optimal but more robust �lters into the
methods [1] and applying cepstral pre�lters to decon-
volve the signals prior to TDE estimation [5]. The use
of sub-optimal �lters will be examined here in a limited
context and shown to provide improvement over the ML
estimators. However, the deconvolution approach is not
appropriate for this application. Because the signal con-
tent is unknown, non-stationary speech, and the sources
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themselves may be moving, it is typically not possible to
estimate the characteristics of the reverberant channel
as required for these pre�ltering techniques.
Motivated by the shortcomings of these conventional

TDE algorithms under blind multipath conditions, this
paper develops an alternative method of time-delay esti-
mation based upon a natural extension of the LS TDE.
By reformulating the problem as a linear regression
of phase data, robust statistical methods may be ap-
plied to the estimation procedure. Instead of minimiz-
ing a weighted least-squares criterion, alternative error
measures capable of deemphasizing the outlier e�ects
created under realistic environments may then be em-
ployed. This alternative approach is shown to be less
susceptible to room reverberation e�ects. The next sec-
tion outlines the conventional TDE's addressed here and
discusses the proposed robust method. In Section 3 sim-
ulations are performed across a range of source place-
ments and room conditions to illustrate the utility of
the proposed time-delay estimator. Section 4 presents
some interpretations and conclusions.

2. METHODS FOR TIME-DELAY
ESTIMATION

The signals received at the two microphones, x1(t) and
x2(t), may be modeled as:

x1(t) = h1(t) � s(t) + n1(t) 0 � t � T

x2(t) = h2(t) � s(t� �) + n2(t)

where � is the relative signal delay of interest, h1(t) and
h2(t) represent the impulse responses of the reverber-
ant channels, s(t) is the speech signal, n1(t) and n2(t)
correspond to uncorrelated noise, and � denotes linear
convolution. Following [6], the analysis time interval, T ,
will be limited to a 20ms� 30ms range corresponding
to the stationarity interval of speech.

TDE based upon Generalized Cross-Correlation

The GCC TDE may be expressed as:

�̂GCC = arg max
�
Rx1x2 (�)

Rx1x2(�) =

1Z
�1

W (!)X1(!)X
0

2(!)e
j!� d! (1)

The generalized cross correlation function for a
given time-lag, Rx1x2(�), is calculated as the inverse
Fourier transform of the received signal cross-spectrum,
X1(!)X

0

2(!), scaled by a weighting function, W (!).
Two distinct GCC TDE's will be considered here.
The �rst is the maximum likelihood TDE, �GCC�ML,
detailed in [1]. Using an ideal weighting function,
WML(!), derived from magnitude squared signal coher-
ence and roughly equivalent to a frequency-dependent



SNR, the estimator is asymptotically unbiased and ef-
�cient for uncorrelated, stationary Gaussian signal and
noises and no multipath. In practice the required co-
herence function is unavailable a priori and must be
estimated from the given data. This is typically done
via a temporal averaging technique, such as in [7]. The
coherence-estimation process can prove to be problem-
atic for any non-stationary signal. This issue is ad-
dressed in [6] where a single-frame, ML-type weight-

ing approximation, ŴML, is shown to o�er advanta-
geous results with speech signals. The approximated
ML weighting, which will be used in the simulations to
follow, is roughly equivalent to the signal SNR evaluated
from a single frame of observed data and given by:

ŴML(!) =
jX1(!)jjX2(!)j

jN1(!)j2jX2(!)j2 + jN2(!)j2jX1(!)j2

The noise power spectra, jN1(!)j
2 and jN2(!)j

2, are as-
sumed to be available or estimatable during silence in-
tervals.
A second GCC-based TDE known as the Phase Trans-

form, �GCC�PHAT , uses only the phase information at
each frequency to derive the weighting function:

WPHAT (!) = jX1(!)X
0

2(!)j
�1

By placing equal emphasis on each frequency, the
WPHAT weighting is sub-optimal under ideal conditions,
but tends to be less susceptible to anomalous condi-
tions, particularly reverberation [1]. As a result of these
features, the Phase Transform has been investigated
as a means for speech signal TDE in realistic environ-
ments [8]. Several other practical weighting schemes
which compromise theoretical optimality for robust per-
formance are available for use with the GCC TDE [1].
However, only these two relatively extreme weightings
will be evaluated here.

TDE based upon Linear Regression

The TDE problem may be reformulated in terms of a
linear regression problem by noting that the phase of
the cross-spectrum, �(!), varies linearly with angular
frequency, the constant of proportionality being � , i.e.:

�(!) = arg(X1(!)X
0

2(!)) = !� + �(!)

where �(!) is a noise term. The time delay is now found
by `�tting' a line to the phase data. The traditional
approach involves the minimization of a weighted least-
squares (LS) cost function:

�̂LS = argmin
�

1Z
�1

 (!)(�(!)� !�)2d! (2)

In [2] it is shown that under similar ideal signal con-
ditions to the GCC-ML estimate, the �(!) terms are
zero-mean, uncorrelated, and Gaussian. Under such cir-
cumstances, the LS TDE generates the ML estimate,
�LS�ML. The ideal phase weighting,  ML(!), is de-
rived from the magnitude squared coherence function
in a manner similar to WML(!).
The GCC and LS-based approaches to time-delay es-

timation are nearly equivalent in terms of their mathe-
matical development. The expression in (2) represents
a �rst-order approximation to (1) and may be derived
directly from the GCC TDE criteria.
The GCC and LS based approaches to the TDE prob-

lem are derived under single-path conditions and each
produces theoretically optimal results only under ideal

noise conditions. When reverberations are introduced,
the cross-spectrum phase noise terms may be signi�-
cantly biased, rendering either ML weighting (WML(!)
or  ML(!)) inappropriate and producing signi�cant er-
ror in the corresponding estimators. The modi�cation of
the weighting by use of the Phase-Transform dissipates
some of these e�ects. Given the nature of the phase
errors encountered under these conditions, some bene�t
may be derived by putting aside the explicit weighting
functions and addressing the shortcomings of the LS
norm as a cost function; it tends to overemphasize bi-
ased phase data. A potentially favorable approach is to
consider alternative regression cost functions which are
robust to the outlier phases due to reverberation and
still allow for some means of weighting phases associ-
ated with high SNR conditions. Speci�cally, the linear
regression problem may be generalized [9] in terms of a
generic cost function �(x):

�̂R = argmin
�

1Z
�1

�

�
�(!)� !�

S(!)

�
d! (3)

The weighted LS criterion is a special case of the gen-
eralized regression problem with �(x) = x2 and S(w) =

1=
p
 (!). A popular and e�ective cost function for ro-

bust regression is Tukey's Biweight [10, 11], given by:

�BI(x) =
n

�(1� x2)3=6 jxj � 1
0 jxj > 1

(4)

The Biweight corresponds to the negative of a smooth,
symmetric, unimodal probability density. It assigns a
maximal error value to any scaled absolute residual > 1
thereby diminishing the e�ect of outliers in skewing the
cost function. A scaling term, S(!), has been included
in the cost function. In general, the scale factor a�ects
the nature of the error space. Uniformly small S(!)
terms produce many local minima and discontinuities
in the error surface, while large scaling terms generate
a more continuous, but less sensitive error regions. The
scaling factor may also be used to place some empha-
sis on those frequencies expected to o�er an SNR ad-
vantage. In this respect it is analogous to an inverse
variance weighting.
Figure 1 o�ers an informal comparison of the fea-

tures associated with the time-delay estimation criteria
discussed. The criteria are plotted as functions of po-
tential delay for a pair of 25.6ms Hanning windowed,
20kHz sampled speech segments generated under a .1s
room reverberation condition (The simulation process
will be detailed in the next section.) with a .55ms de-
lay and uncorrelated, white noise added to each chan-
nel giving a 25dB SNR. For the GCC-based methods,
plots (A) and (B), the delay is estimated from the peak
of the appropriately �ltered cross-correlation function.
Two Biweight error criteria are presented. Plot (C) in-
corporates a small scaling factor (S(!) = �=3) while
plot (D) uses a larger scale (S(!) = 3�=4). The corre-
sponding delay estimates are found from the minimum
of their respective criteria. In each case, the true de-
lay (10.99 samples) is plotted with a solid line while
the corresponding estimate location is indicated by a
dashed line. Each of the criteria functions possesses a
global extreme at the true delay. In each case the spu-
rious extrema are present to some degree. The GCC-
ML criterion appears most sensitive to these anomalous
peaks; the GCC-PHAT is less so, producing a more pro-
nounced global maximum. The Biweight cost functions
possess a desirable, distinct valley at the true delay and
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Figure 1. Sample Error Criteria associated with
each of the TDE's: For the GCC-based meth-
ods, (A) and (B), the delay is estimated from the
peak of the GCC function. For Biweight meth-
ods, (C) and (D), the estimate is found from the
error minimum. In each case, the true delay is
plotted with a solid line while the corresponding
estimate is shown with a dashed line.

appear to provide the best estimate resolution of the
set. The varying scale factors exhibit a general trade-
o� between estimate resolution and spurious minima.
The error space associated with the small scale factor,
plot (C), possesses a well de�ned minima at the true lo-
cation. The coarser Biweight scaling, plot (D), produces
a smoother error surface, compromising resolution for
rejection of local extrema.

3. SIMULATIONS

The relative performance of the time-delay estimators
was evaluated through a series of Monte Carlo trials in
a simulated (4m�7m�2:75m) rectangular room (illus-
trated in Figure 2) with plane reective surfaces and
uniform, frequency-independent reection coe�cients.
Room impulse responses were generated with the image
model technique [12] using intra-sample interpolation,
up to sixth order reections, and cardioid microphone
patterns. Room reverberation times, T , ranged from 0s
to 0:4s. The corresponding reection ratio, �, used by
the image model was calculated via Eyring's formula:

� = exp(�13:82=[c(L�1

x + L
�1

y + L
�1

z )T ])

where Lx, Ly, and Lz are the room dimensions and c is
the speed of sound in air (� 342m=s). Three di�erent
source locations were considered corresponding to small,
moderate, and large bearing angles relative to the mi-
crophone pair along with a microphone separation of
0.3m. Details of the simulation parameters are listed in
Figure 2.
For each combination of parameters, 250 segments

of 20kHz sampled speech were convolved with the ap-
propriate channel impulse response. White, zero-mean,
Gaussian noise with a �xed energy level was added to
the segments which were then truncated to 25.6ms anal-
ysis frames using a Hanning window. The resulting
signal-to-noise ratios varied from 20-35dB depending
on the content of the speech signal. Knowledge of the
background-noise variance was assumed to be available
and incorporated into the applicable weighting func-
tions.

7 m

4 m

Source #1: 

Source #3: 
Source #2: θ=40, 

Microphones: height = 1.5 m

Room Reverberation Times: 

- corresponds to wall reflection ratios:
[ 0, 0.59, 0.77, 0.84, 0.88 ]

T= [ 0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s ]

Simulation Parameters:

room height = 2.75 m

θ

R

Source #2

R = 3 m, height = 1.5 m
R = 3 m, height = 1.5 m
R = 3 m, height = 1.5 m

Microphone #1Microphone #2
D

Source #1

Source #3

θ=10, 

θ=70, 

D= 0.3 m

Figure 2. Overhead View of the Room Set-Up
and Simulation Parameters

The GCC-based TDE's were calculated from discrete-
time versions of (1) through conventional processing
techniques. A sampled version of the GCC function
was computed with the FFT and the integer sample
delay corresponding to the maximum of the GCC func-
tion was found. In practice, the domain of potential
time-delays was limited to possible values given the mi-
crophone separation. This coarse delay estimate was
re�ned through quadratic interpolation and then used
as the initial condition of a limited Newton-Raphson it-
erative search of the sinc interpolated GCC function.
While computationally more intensive, this multi-stage
approach achieves sub-sample TDE resolution with ac-
curacy beyond that of a parabolic �t while avoiding con-
vergence to a local maximum [3].
The linear regression-based delay estimator, �R, was

calculated via a global search over the continuous range
of possible delay values. A widely available, simplex-
based non-linear optimization routine (the MATLABTM

`fmins' function) was employed over a regularly spaced-
grid of initial search locations. The evaluation of
discrete-time version of (3) includes the unwrapping
modulo 2� of the phase data relative to the phase of
the hypothesized line �t prior to calculation of the error
measure in question.
Four di�erent TDE's were evaluated: GCC-ML,

GCC-PHAT, Biweight with scale �=3 (BI1), and Bi-
weight with scale 3�=4 (BI2). Bias, variance, root-mean
square error (rmse), and % anomaly statistics were cal-
culated over the 250 speech segments with each of the
sources and reverberation times. Figures 3 presents %
anomaly and rmse statistics obtained using the three
source locations. The % anomaly �gures represent the
percentage of estimates outside a 10� absolute error
threshold. The rmse value incorporates the tradeo�
between bias and variance into a single statistic. It
was calculated using the non-anomalous time-delays and
then converted to a direction-of-arrival (DOA) in de-
grees. The GCC-based TDE's have been plotted with
dashed lines while the results obtained with the Bi-
weight method are delineated by a solid lines.
With regard to estimate anomalies, the TDE's per-

formed comparable under most combinations of source
bearing and reverberation times. Exceptions to this
pattern occurred for Source#1 (the mild bearing an-
gle) with the GCC-ML and BI1 producing markedly
higher % anomalies as the reverberation time was in-
cremented. This behavior is consistent with the in-
terpretations of Figure 1 where the GCC-ML and the
small-scale Biweight criteria exhibit inferior rejection
of spurious extrema and are therefore more suscepti-
ble to anomalous estimates. As expected, the GCC-
ML yields superior rmse performance in the noise only
case, but degrades dramatically as reverberations are
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Figure 3. TDE simulation results: Anomalies
and rmse trial statistics for di�erent source lo-
cations and four TDE's: GCC-ML, GCC-PHAT,
small-scale Biweight (BI1), and large-scale Bi-
weight (BI2).

introduced. The GCC-PHAT and Biweight TDE's out-
perform the GCC-ML when reverberations are present.
With Source#1, the small-scale Biweight (BI1) achieves
the lowest rmse �gures. This is consistent with the
anomaly robustness versus estimate resolution trade-
o� associated with the Biweight scaling size. As the
source bearing angle is increased, Sources #2 and #3,
the smoothing bene�ts of the larger scale size appear to
outweigh the decreased resolution. The BI2 TDE con-
sistently achieves lower rmse scores than BI1 and mildly
outperforms the GCC-PHAT TDE.

4. DISCUSSION

As the results of the preceding section clearly illustrate,
the popular method for time-delay estimation, the Gen-
eralized Cross-Correlator, is extremely susceptible to en-
vironmental reverberation e�ects. In the presence of
even mild reverberations, the GCC TDE bene�ts con-
siderably by eliminating the optimal �lter weights.
The major goal of this work has been to introduce

an e�ective means for doing time-delay estimation in
the presence of unknown reverberant channels. The
TDE presented employs linear regression using Tukey's
Biweight as the relevant error criterion. The motiva-
tion behind this approach comes from the interpreta-
tion of the time-delay estimation problem as a line �t
in the phase domain. The e�ects of reverberation on
the observed phases are analogous to outliers in the lin-
ear regression problem. The Biweight measure assigns
maximum weight to errors beyond a certain threshold
thereby discounting the e�ects of outliers in the estima-

tion process. (The traditional least-squares �t makes
no account for aberrant data and tends to be easily led
astray by outliers.) The utility of this strategy has been
shown through a series of simulations in reverberant en-
closures. In each of the conditions investigated, the Bi-
weight TDE outperformed estimators based upon the
conventional Generalized Cross-Correlator.
The Biweight criterion, while popular and seemingly

e�ective for this application, represents only an ini-
tial approach to this genre of TDE estimator. Many
possible means exist for performing robust linear re-
gression in the presence of outliers. Other error mea-
sures motivated by this basic strategy are open to in-
vestigation as well as schemes for adjusting the kernel
scaling to incorporate prior knowledge of the phase at-
tributes. While not detailed here, dynamic adjustment
of the criterion parameters as a function of source bear-
ing, frequency-dependent SNR, and environmental con-
ditions also shows considerable promise for improving
the performance of the proposed time-delay estimator.
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