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ABSTRACT

This paper deals with Multiple Input Multiple Output sys-
tems for active control of acoustic signals. These systems
are used when the acoustic field is complex and therefore a
number of sensors are necessary to estimate the sound field
and a number of sources to create the cancelling field. A
steepest descent iterative algorithm is applied to minimise
the p-norm of a vector composed by the output signals of
a microphone array. The existing algorithms deal with the
2-norm of this vector. This paper describes a general frame-
work that covers the existing systems and then it focuses
on the co-norm minimisation algorithm. The minimax al-
gorithm based on the co-norm minimises the output signal
which has the greatest power. It is shown by means of sim-
ulations using measured data from a real room that the
minimax algorithm leads to a more uniform final noise field
than the existing algorithms.

1. INTRODUCTION

In recent years adaptive signal processing has been devel-
oped and applied to the expanding field of active noise con-
trol (ANC) [1]. The objetive of ANC at low frequencies
in rooms and enclosures is normally to achieve a global
control of the sound field. Therefore multichannel active
control methods must be used. The sound field in the
enclosure is measured by means of multiple sensors. The
signals recorded by these sensors will be termed error sig-
nals. These error signals are then passed to a digital con-
troller that adjusts the sound generated by a number of
secondary sources following a certain minimisation strat-
egy. The most common strategy consists in minimising the
sum of the squares of the measured signals. Such strategy
together with an adaptive FIR filtering squeme leads to an
algorithm called multiple error LMS which has been stud-
ied [2] [3] and applied to some practical cases. The best
known applications are the control of ”boom” noise in cars
[4] and the control of propeller-induced noise in flight cabin
interiors [5].

The minimisation of the sum of the squares produces a
residual acoustic field in the enclosure that can have large
differences among the level values [6] at different locations
within the enclosure. In most applications a more uniform
acoustic field is desired. This difference of levels could be
easily perceived by a person walking inside of a room. In or-
der to get a more uniform acoustic field a weighted squared
error strategy of minimisation was used in [2].

The analytical framework is developed for a general single
frequency acoustic model. To test the algorithm with real
data, a small rectangular reverberant room was chosen.
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Figure 1. Sketch of the acoustic model. The loud-
speakers are fed by their complex strengths denoted
by 4. The complex pressure signals picked up by
the sensors are denoted by ¢; and they are composed
the disturbance due to the primary source and the
control signals. The system responses between the
secondary sources strengths and the control signals
at the sensors are named c;jpn,.

2. ACOUSTIC MODEL

A frequency domain model of an acoustic system is consid-
ered. The system under study is assumed to be linear and
is excited in the steady state at a single frequency. In this
case, the amplitude and phase of each signal (in the steady
state) can be described by a complex number. Therefore the
complex pressure in a sensor output, e;, can be expressed
as the sum of the contributions from a number of sources.
In general, [ € {1...L} and there are assumed to be M +1
sources: one primary source and M secondary sources.

Equation (1) describes the relationship between the
source strengths and the error sensor outputs at a frequency
Wo.

M

ei(ws) = di(wo) + Y cum(wo)um(w,) (1)

m=1

In the last expression d; is the disturbance due to the
primary source measured at sensor [. The strength of the
mth secondary source is represented by u.,,. The complex
numbers ¢y, are the system response between the [th error
sensor and the mth secondary source, these complex coefi-



cients are the ratio between the signal measured at the Ith
sensor and the mth secondary source strength. For nota-
tional simplicity, the excitation frequency w, is supressed
in the rest of the text. Equation (1) can then be written in
the following vector form.

e; =d; + cju (2)

The column vector u = [ug,..., uM]T contains the sec-
ondary source strengths and it is called the secondary source
strength vector. The row vector ¢; components are the sys-
tem responses between each of the secondary sources and
the [th error sensor. An equivalent development for a single
secondary source can be found in [7].

3. ALGORITHM DERIVATION

3.1. The cost function

The error signal vector contains the disturbance which is
to be minimised. A family of algorithms is defined. Each
algorithm belonging to this family will minimise a different
measure of this error vector. The error criterion, also called
the cost function, is defined as the p-norm of the error vec-
tor. Functions related to the norm are very often used in
minimisation problems because they are convex functions.
The definition of this cost function is given by the equa-
tion (3). Similar cost function definitions can be found in
[8] and [9] with the purpose of adaptive filtering of non-
gaussian stable signals. This adaptive algorithm is used
in [10] for the active control of impulsive noise. All these
papers deal with p-norm cost functions with 1 < p < 2. In
general

Tp = llell» =

where 1 < p < oo and |el|2 = eje;. Equation (3) defines
a family of cost functions depending on the values of p.
Different values of the parameter p lead from the sum of
the squares, p = 2, to the maximum measured signal in the
limit with p tending to infinity. In case of p = 2 the p-norm
cost function takes the following form,

J2 = |le]l2 =

Instead of Jz, the squared version of this cost function,
JZ is commonly used in optimisation problems since both
functions share the same extreme values. Minimising J3 by
means of a steepest descent method leads to the MELMS
algorithm, [1] [2] [3]. The MELMS algorithm updates the

secondary strength vector using the following recursion [6],

u(n+1)=u(n) —pY_cfe(n) (5)

where the parameter p is called the convergence parame-
ter and ()H denotes the conjugate transpose of the chosen
vector. It is assumed that the system under control achieves
its steady state before the next secondary strength vector
update.

Our study focuses on the limiting case, p — oo. For the
limiting case, it is obtained the expression bellow,

Joo = lim J, = max |e;| = |es| (6)
p—0 14

where e, corresponds to the error signal with largest ab-
solute value at each iteration.
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Figure 2. The experimental enclosure showing the
layout of the loudspeakers and microphones used
for the laboratory experiments. The microphones
are suspended from the ceiling.

3.2. Minimax Algorithm Derivation

A recursive steepest descent type algorithm can be defined
using the expressions of the gradient vector and the cost
function with p tending to infinity [6] [7]. The complex
derivatives rules in [11] have been followed here. The recur-
sion will be,

un+1)=u(n)— acfeb(n) (7)

where the parameter « is named the algorithm conver-
gence parameter. Equation (7) corresponds to the recursion
called the Minimax Algorithmin this paper. The secondary
source strength vector is updated using only one of the error
signals. The algorithm behaves as if it is trying to minimise
in each iteration the largest error signal power in a least
squares sense. We are, however, using only one error signal
in each iteration of the algorithm. A similar iterative algo-
rithm working on single channel data in the time domain
can be found in [12]. Information about the potential com-
putational savings and implementation of such algorithms
can be found in [13].

As pointed above, only one of the measured signals is
used in the algorithm calculations at any one time in equa-
tion (7). Therefore the computational load is reduced as
compared with the load given by (5). The scanning error
algorithm [14] can also use only one signal in each algo-
rithm iteration. This algorithm minimises the error signals
in turn (individually or in groups), in a least squares sense.
However, it is shown in [6] [14] that this algorithm produces
the same final acoustic field than the sum of squares.

4. SIMULATIONS WITH REAL DATA

Data from an acoustic system working in a real room have
been used to test the behavior of the minimax algorithm
and compare it with MELMS. The system responses and
primary field were measured in a small enclosure. The en-
closure measured about 6m x 2.2m x 2.1m and had a re-
verberation time of about 1/3 second in the low frequency
range. The excitation frequency was 88 Hz and the active
noise control system is composed of I, = 32 microphones
and M = 16 secondary loudspeakers. The positions of the
loudspeakers in the room are shown in figure 2. The 32 mi-
crophones are uniformly distributed at the height shown in
the figure. The measurements of the system responses and



ATTENUATION(dB)

sum of squares | maximum level
2-norm 32.22 32.57
minimazx 29.72 36.38

Table 1. Attenuation after control. The attenuation
of the sum of the squares of the error signals and the
attenuation of the maximum squared error signal
are shown for both criterions of minimisation.

the primary field in the enclosure were then used in simu-
lations in which either ||e||§ or ||e|lsc was minimised using
the steepest descent method.

Table 1 shows the attenuation obtained after convergence
of the simulated algorithm using either the 2-norm of the
error vector criterion or the oco-norm. The difference of
levels before and after control is measured for the sum of
squares of errors and for the maximum square error. In
spite of the fact that it is not designed to minimise the sum
of the squared errors, the minimax algorithm still achieves
a reasonable attenuation of this quantity. The minimax
algorithm however, achieves almost 4dB more attenuation
in the maximum error than the least squares algorithm. It
is important to note that after 2-norm minimisation there
can be several error signals with powers over the minimax
maximum level. This fact implies that there can exist zones
in the room with relatively high level of noise when the 2-
norm is used. The presence of zones with low level noise
compensates this effect and achieves the minimum value in
the sum of the squares.

The zones of low and high noise level after convergence
of both algorithms can be more easily seen in the fig-
ures 3 4 and 5. Each pair of integer values of the z and
y axes of these figures locates an error sensor in the room.
The z axes value at these coordinates represents the level
of noise.

Figure 6 illustrates the evolution of the maximum error
signal level for the minimax algorithm and the MELMS al-
gorithm. The data used in the figure 6 are obtained from
simulations using the system responses and primary field
measured in the enclosure. The maximum value of the
convergence parameter g was chosen in the curve for the
MELMS algorithm. The minimax algorithm gives a conver-
gence which has piecewise exponential decay. The MELMS
algorithm curve is made up from multiple exponential de-
cays [3]. The speed of convergence of the minimax algo-
rithm increases with the convergence parameter but then
so does the midsadjustment of the maximum error signal
final level. This relationship is further discussed in [6] [7].

5. CONCLUSIONS

In this paper a new criterion of minimisation has been ap-
plied to active noise control. This criterion has been used
to develop an iterative algorithm that minimises the max-
imum value of each of the error signals and which can be
implemented in practice. The algorithm uses only one error
signal in each iteration so it needs less computational effort
than the MELMS algorithm which uses all the error signals
in each iteration. However, the new algorithm has to find
out which of the error signals has the largest level although
there exist efficient methods for this calculation.

The minimisation of the maximum level of the error sig-
nals has been shown to improve the uniformity in the final
acoustic field. The simulations have been carried out for a
fixed positions of the loudspeakers and the microphones in
the room.
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Figure 3. Original error signal levels at the sen-
sors. The horizontal axes represent the row num-
ber (0 to 3) and the column number (0 to 7) of the
sensors in the microphone array.
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Figure 4. Error signal levels at the sensors af-
ter minimisation of the sum of squared signals
(MELMS). The horizontal axes represent the row
number (0 to 3) and the column number (0 to 7) of
the sensors in the microphone array.
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Figure 5. Error signal levels at the sensors af-
ter minimisation of the maximum value (MINI-
MAX). The horizontal axes represent the row num-
ber (0 to 3) and the column number (0 to 7) of the
sensors in the microphone array.
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Figure 6. Evolution of the maximum error sig-

nal level for the MINIMAX algorithm with in-
creasing values of the convergence parameter, o =
0.05,0.1,0.3, and for the MELMS algorithm with the
maximum allowed convergence parameter.



