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ABSTRACT

The problem in active noise control in a linear duct is ex-
amined. Essentially, a nonlinear inverse to a nonminimum
phase actuator is proposed. The nonlinear inverse exploits
the non-Gaussian nature of some chaotic and stochastic
noise sources. The architecture of the controller is derived
using Bayesian estimation theory and is shown to be a com-
bination of a linear adaptive network and a radial basis
function (RBF) or Volterra series (VS) network. Because
of the nonlinear nature of the controller, the �ltered-x least
means square (LMS) architecture cannot be used. Hence a
modi�ed active noise controller is proposed. Simulation res-
ults demonstrate the improvements in performance achiev-
able with the combined linear and nonlinear controller.

1. INTRODUCTION

Active noise control [1] has been successfully applied to
HVAC (heating, ventilating and air conditioning) systems
[2], exhaust noise and motor noise [3]. ANC, in general,
is based on the principle of the destructive interference
between a primary noise source and a secondary source,
whose acoustic output is governed by a controller. The
output of the secondary source has to be in exact anti-
phase with the acoustic wave produced by the primary noise
source. A typical ANC system in a duct, is shown in Fig-
ure 1 and its equivalent block diagram in Figure 2. Such
systems are usually based on a feedforward control strategy.
The noise from the primary source travels, from left to right,
as plane waves through the duct. A microphone, located
upstream from the secondary source, detects the incident
noise waves and supplies the controller with an input signal.
The controller sends a signal to the secondary source (i.e.
loudspeaker) which is in antiphase with the disturbance.
A microphone, located downstream, picks up the residuals
and supplies the controller with an error signal. The vari-
ance of the error signal is usually minimised by a variant of
the LMS algorithm in the controller.
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Figure 1: Feedforward control in a duct

The low-frequency noise in the duct is usually assumed

to be broadband random or periodic tonal noise. Linear
adaptive signal processing techniques [1] are employed to
estimate an antiphase signal. However, today it is known
that many of these noise processes arise from nonlinear dy-
namical systems. Chaotic time series are a typical example
of aperiodic time series which appear to be a stochastic
process when analysed with second order statistics. De-
terministic nonlinear behaviour can arise from all kinds of
di�erent physical systems [4].
The �nite impulse response (FIR) controller in Figure

2 has to identify the cascaded systems P (z) and H
�1

a (z).
Both systems are assumed to be linear, but nevertheless
Ha(z) may be minimum or nonminimum phase. If Ha(z)
is minimum phase its inverse is a stable in�nite impulse
response (IIR) �lter. To approximate an IIR �lter a high
order FIR �lter may be designed. In the case that Ha(z)
is nonminimum phase [5], the inverse demands a non-
causal linear FIR, which is not feasible in this application.
However, if the input signal x[n] is stochastic non-Gaussian
[6] or deterministic [4] a nonlinear inverse to the transfer
function Ha(z) exists and may produce an improvement in
cancellation performance.
Constructing a nonlinear inverse �lter to a linear �lter

to cancel deterministic noise has been investigated in [4].
Finding an inverse with non-Gaussian stochastic input is
also encountered in numerous channel equalisation prob-
lems [6].
Section 2 describes how a nonlinear inverse to a linear

�lter may exist and in Section 3 the ANC system in Figure
2 is redesigned to enable nonlinear system identi�cation. A
variety of simulations and results are presented in Section
4 and Section 5 concludes this paper.

2. NONLINEAR INVERSE OF A LINEAR

FILTER

If the controller is to model P (z)H�1

a (z) when the actuator
transfer function Ha(z) is nonminimum phase [5], a causal
linear controller will be suboptimum since it cannot, by
de�nition, characterise the anticausal part of H�1

a (z). The
derivation of the following mathematical expressions for the
combined controller assumes that the feedback path F (z)

has been e�ectively cancelled by F̂ (z)Ĥa(z). The block
diagram is shown in Figure 3. The transfer function Ha(z)
is assumed to be nonminimum phase with a noncausal in-
verse H�1

a (z). The transfer function H�1

a (z) can be written

as H�1

a (z) = z
k ~Ha(z) , where k is an integer and ~Ha(z) is

a causal transfer function. The task of the controller Hc(z)

is to produce an estimate of ~d[n+ k] based
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Figure 2: Block diagram of the ANC system with conventional
adaptive FIR �lter and feedback cancellation
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Figure 3: Block diagram of ANC system for derivation of the

combined controller

on the input vector xN [n].

d[n] = ~d[n+ k] = f(xN [n]) (1)

with

xN [n] =
h
x[n]; x[n� 1]; : : : ; x[n�N + 1]

iT
(2)

Given xN the minimum mean square error (MMSE) estim-
ate of d[n] is obtained by the conditional expectation or
Bayesian estimate :

d̂[n] = Efd[n]jxNg (3)

Apart from some special cases where fd[n]g and fx[n]g are
jointly Gaussian, the solution of 3 is generally nonlinear.
The desired signal is given by

d[n] =

N�1X
i=0

hix[n+ k � i] (4)

where fhig are coe�cients of the transfer function

P (z) ~Ha(z). Equation (4) can be expressed as two parts

d[n] = d1[n] + d2[n] (5)

=

k�1X
i=0

hix[n+ k� i] +

N�1X
i=k

hix[n+ k� i] (6)

Thus 3 can be rewritten as

d̂[n] = Efd1[n] + d2[n]jxNg (7)

= Efd1[n]jxNg+ Efd2[n]jxNg (8)

The second part of 8 is a linear system identi�cation prob-
lem

d̂2[n] = E

nN�1X
i=k

hix[n+ k � i]jxN

o
(9)

The optimum solution would be

d2[n] =

N�1X
i=k

hix[n+ k � i] (10)

The �rst part of 8 does not o�er a straightforward solution

d̂1[n] = Efd1[n]jxNg (11)

= E

n k�1X
i=0

hix[n+ k � i]jxN

o
(12)

=

k�1X
i=0

hiEfx[n+ k � i]jxNg (13)

It is usually not necessary to embed xN [n] into N dimen-
sions. For modelling reasons (curse of dimensionality) a
smaller dimension M < N will be more appropriate.

d̂1[n] =

k�1X
i=0

hiEfx[n+ k� i]jxMg (14)

Efx[n+ k � i]jxMg is an optimal predictor of x[n+ k � i].
To predict x[n + k � i] a RBF network or a VS may be
implemented. Thus the prediction of x[n + k � i] can be
estimated by

Efx[n+ k � i]jxMg =̂

LX
j=1

�ij�j(xM [n]) (15)

where L is the number of the nonlinear kernels f�jg and
linear weights f�ijg. Therefore an estimate of d1[n] can be
found as

d̂1[n] =

k�1X
i=0

hi

LX
j=1

�ij�j(xM [n]) (16)

and merging the two linear layers fhig and f�ijg together,
(16) becomes

d̂1[n] =

LX
j=1

wj�j(xM [n]) (17)

�nally an estimate of d[n] can be found as

Efd[n]jxNg=̂

LX
j=1

wj�j(xM [n]) +

N�1X
i=k

hix[n+ k � i] (18)

as the input vector xN [n] does not contain any future values
k may be set to zero. The linear combiner will have the form

y[n] =
h
�1;�2; : : : ;�L; x[n]; x[n� 1]; : : : ; x[n�N + 1]

i
h
w1; w2; : : : ; wL; h0; h1; : : : ; hN�1

iT
(19)



The linear weights fwjg and fhig in (19) are estimated by
a least squares algorithm.
The linear system identi�cation part in (19) requires an in-
put signal xN [n] which is broadband. As long as the noise
excites all the frequencies necessary to identify the linear
system, the linear part does not require any assumptions
about the distribution or nonlinear deterministic character-
istics in the input signal xN [n].
The nonlinear prediction part, though, requires that there
is some nonlinear mapping between adjacent input samples.
If the noise is nonlinear and deterministic, i.e. a chaotic

time series, it is possible to predict the noise in the short
term [4]. As the function f in x[n + k] = f(xM [n]) is
generally nonlinear to generate chaos, it is necessary to use
a nonlinear model for the k-step prediction task. Chaotic
time series which arise from dynamical systems are clearly
non-Gaussian but are also deterministic. It is possible to
embed the �nite dimensional manifold � of the dynamical
system with the methods of delays [4]. As the system
evolves through time the measured values of the time series
in the tapped delay line describe a trajectory in an embed-
ded state space. This embedded attractor does not occupy
the whole state space. This is in strong contrast to some
stochastic processes, which �ll out more or less the whole
state space.

3. NONLINEAR CONTROL OF LINEAR

PLANT

The acoustic delay, modelled by He(z), can cause stability
problems in the control algorithm. To circumvent the sta-
bility problems the linear adaptive FIR controller in Figure
2 is usually trained by the �ltered-x LMS algorithm. The
derivation of the �ltered-x LMS algorithm may be found
in [7]. In [7] the authors point out that the �ltered-x
LMS algorithm will only converge if the adaptation process
is slow and that the controller is linear. In the �ltered-x
LMS algorithm both the input x[n] and plant output e[n]
are �ltered implicitly before being presented to an adaptive
�lter algorithm. While this �ltering process or linear map-
ping is e�ectively cancelled if the system is linear, it distorts
observations of a nonlinear system.
To circumvent these restrictions the ANC system was re-

designed to allow a nonlinear system identi�cation. The
block diagram is shown in Figure 4. P (z) is the trans-
fer function of the duct plant between the detection micro-
phone and the control source. Ha(z) is the transfer function
of the actuator, which also represents a driving unit and a
reconstruction �lter for the D/A conversion. The acous-
tic path, between the control source and error microphone,
and the error microphone itself is given as the transfer func-
tion He(z). The acoustic feedback path F (z) in the duct is
neglected for the two following reasons. For the �rst it is as-

sumed that the o�-line modelled �lter F̂ (z)Ĥa(z) eliminates
the feedback and secondly that uni-directional microphones
are used. The noise, caused by turbulence in the duct on
the microphones, is assumed to be zero.
To get back to the actual error signal e[n] it is necessary

to build the transfer function (Ĥa(z)Ĥe(z))
�1 into the error

path. The inverse of Ha(z)He(z) is modelled o�-line, using
only the loudspeaker as a white noise source. Fortunately it
is possible to use an inverse modelling delay to estimate the
inverse more accurately. To compensate the inverse model-
ling delay the signals x[n] and y[n] are delayed by the same
delay z

�m. The signals y[n�m] and e
0[n�m] are added
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Figure 4: Block diagram of ANC system used in simulations

up to form the desired signal d0[n�m]. The delayed input
signal x[n�m] and the delayed desired signal d0[n�m] are
supplied to a least squares algorithm. Another advantage
in using this scheme, as shown in Figure 4, is that more
sophisticated least squares algorithms (Householder trans-
formations, SVD) can be implemented, which are especially
useful when dealing with a nonlinear controller and a col-
oured input xN [n].

4. SIMULATIONS AND RESULTS

The following simulations are based on the block diagram
in Figure 4. Six di�erent input noise signals x[n] with
zero mean and variance �2x = 1:0 are used : White Gaus-
sian noise, white uniform noise, coloured Gaussian noise,
Logistic chaotic noise [8], Lorenz chaotic noise [9] and
Du�ng chaotic noise [10]. The coloured Gaussian noise is
the white Gaussian noise �ltered by a 2nd order lowpass
IIR �lter with a normalised cut-o� frequency of 0:05. The
coloured Gaussian noise is normalised to have zero mean
and unit variance.
Two di�erent nonlinear models were investigated. The

�rst one is a truncated and modi�ed Volterra �lter with
only quadratic and cubic terms. The second one is a norm-
alised Gaussian radial basis function (NRBF) network [6].
Both of the nonlinear models are linear in their paramet-
ers and are, therefore, easy to train, compared to neural
networks like multilayer perceptron (MLP) networks. For
comparison in performance three di�erent controllers were
investigated.

� Linear FIR �lter with N = 10 coe�cients

� Combined linear (N = 10) and Volterra (quadratic,
cubic) �lter

� Combined linear (N = 10) and NRBF (LLogistic =
337; LLorenz = 159; LDuffing = 126) network

The input vector xM [n] has a dimension of M = 3 in Table
1. In Tables 2 - 4 the dimension is M = 5. The main
acoustic plant P (z) is a 4th order FIR �lter [11].

P (z) = z
�2 � 0:3z�3 + 0:2z�4

The controller Hc(z) does not depend on the error path
transfer function He(z). Therefore, only one error path
He(z) is used, He(z) = z

�5. Three actuators Ha(z) with
di�erent phase characteristics were chosen. Their transfer
functions are shown in the Tables 1 - 4.



The inverses of all combinations of Ha(z)He(z) are estim-
ated by exciting white noise through Ha(z)He(z) and train-
ing an adaptive 32nd order FIR �lter. The inverse model-
ling delay z�m is m = 16 for Ha1(z)He(z) and Ha3(z)He(z)
and m = 5 for Ha2(z)He(z).
The least squares algorithm is a block least squares al-

gorithm using the Householder transformation. The norm-
alised mean square error (NMSE) is computed, after con-
vergence, as follows :

NMSE = 10 log
10

�
�
2

e

�
2

d

�
dB

where �2e is the variance of e[n] and �
2

d is the variance of
d[n].
In the simulation where the input signal x[n] is white

Gaussian, white uniform or coloured Gaussian a purely
linear controller achieves the best result. The results are
provided in Table 1. The results for the white noise pro-
cesses are provided as a basis for comparison since no lin-
ear or nonlinear predictive component is possible. When
coloured Gaussian noise is used linear prediction improves
the performance for the maximum phase actuator Ha1(z)
and nonminimum phase actuator Ha3(z). The results for
Ha2(z) with a coloured input demonstrates a marked im-
provement in performance. At �rst sight, this may appear
surprising. The actuator is minimum phase and thus no
predictive component is required. However this is not a
straightforward system identi�cation task. The achievable
NMSE is dependent on both the spectrum of the input sig-
nal and the transfer function of the actuator. Therefore
there is no reason to expect the elements of column 4 in
Table 1 to be the same as in the columns 2 and 3.
The situation changes dramatically when the input sig-

nal x[n] is non-Gaussian and deterministic. Both combined
linear and nonlinear controllers in Tables 3 and 4 achieve
far better performances in conjunction with the maximum
phase actuator Ha1(z) and the nonminimum phase actu-
ator Ha3(z) compared to the linear controller in Table 2.
The results for the Du�ng equation are initially surpris-
ing especially with respect to the minimum phase actuator
Ha2(z). However the architecture of (18) only provides a

FIR approximation to H�1

a2 (z). The additional terms could
be provided through backward prediction using the embed-
ding vector xN [n]. The architecture is 
exible enough to
provide this prediction implicitly without interference from
the user. This is a topic of current investigation.

5. CONCLUSIONS

A new active noise canceller architecture has been de-
veloped from the perspective of Bayesian estimation theory.
This architecture exploits the non-Gaussian nature of the
noise source to alleviate the e�ects of nonminimum phase
actuator transfer functions. Simulation results have demon-
strated that this architecture o�ers a signi�cant perform-
ance improvement with respect to traditional linear con-
trollers.

Actuator Linear

Ha(z) Gauss Uniform Colour

Ha1(z) = 0:5 + z
�1 -11 -11 -43

Ha2(z) = 1:0 + 0:5z�1 -41 -41 -74

Ha3(z) = 1:0 + 1:5z�1 � z
�2 -12 -12 -45

Table 1: NMSE in dB using a linear controller and stochastic

noise for x[n]

Actuator Linear

Ha(z) Logistic Lorenz Du�ng

Ha1(z) = 0:5 + z
�1 -10.8 -34.6 -70

Ha2(z) = 1:0 + 0:5z�1 -41 -64.8 -99.7

Ha3(z) = 1:0 + 1:5z�1 � z�2 -12 -35.6 -66.6

Table 2: NMSE in dB using a linear controller and chaotic noise

for x[n]

Actuator Linear + Volterra

Ha(z) Logistic Lorenz Du�ng

Ha1(z) = 0:5 + z
�1 -16.8 -50.5 -91

Ha2(z) = 1:0 + 0:5z�1 -41 -65.1 -105

Ha3(z) = 1:0 + 1:5z�1 � z
�2 -17.9 -50.5 -72.8

Table 3: NMSE in dB using a combined linear and nonlinear con-

troller and chaotic noise for x[n]

Actuator Linear + NRBF

Ha(z) Logistic Lorenz Du�ng

Ha1(z) = 0:5 + z
�1 -28.5 -55.8 -89

Ha2(z) = 1:0 + 0:5z�1 -40.5 -65.6 -105.2

Ha3(z) = 1:0 + 1:5z�1 � z
�2 -29.6 -53.5 -75

Table 4: NMSE in dB using a combined linear and nonlinear con-

troller and chaotic noise for x[n]
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