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ABSTRACT

In some situations where active noise control could
be used, the well-known multichannel version of
the �ltered-X LMS adaptive �lter is too compu-
tationally-complex to implement. In this paper,
we develop a fast, exact implementation of this
multichannel system whose complexity is approx-
imately O(2L) per �lter channel, where L is the
FIR �lter length. In addition, we provide a compu-
tationally-e�cient method for e�ectively removing
the delays of the secondary paths within the co-
e�cient updates, thus yielding a fast implementa-
tion of the LMS adaptive algorithm for multichan-
nel active noise control. Examples illustrate both
the equivalence of the algorithms to their original
counterparts and the computational gains provided
by the new algorithms.

1. INTRODUCTION

In active noise control, undesired sound in an acoustic re-
gion is attenuated by superimposing an equal-but-opposite
acoustical �eld in the region. The \anti-noise" is created
by measuring in real time the source of the unwanted noise
with Nx input sensors, processing this information digitally
to produce Ny output signals, and sending these signals to
the desired quiet region using Ny actuators. An additional
Ne error sensors are placed in the quieted region to provide
feedback for the control system to adjust its characteris-
tics. For the controller, �nite-impulse-response (FIR) �l-
ters adapted using the �ltered-X least-mean-square (LMS)
algorithm are often used to calculate the system's output
signals [1, 2]. Table 1 lists the equations for this algorithm,

where W(i;j)(n) = [w
(i;j)
0 (n) � � � w

(i;j)
L�1(n)]

T contains the

�lter coe�cients for the (i; j)th channel of the controller,be(n) = [�(1)(n) � � � �(Ne)(n)]T contains samples from the
Ne error sensors at time n, the L � Ne-dimensional ma-

trix F (i;j)(n) contains �ltered input signal values, F
(i;j)

(n)

contains the �rst L� 1 rows of F (i;j)(n), y(j)(n) is the jth
output of the controller at time n, and �(n) is the step size

parameter. Here, X(i)(n), X(i)(n), and H(j) are de�ned as

X
(i)(n) = [x(i)(n) � � � x(i)(n� L+ 1)]T (1)

X
(i)(n) = [x(i)(n) � � � x(i)(n�M + 1)]T (2)

H
(j) = [H(j;1)

� � � H(j;Ne)]; (3)
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Table 1: The multichannel �ltered-X LMS algorithm.
Equation # Mults.

for j = 1 to Ny do

y(j)(n) =

NxX
i=1

X(i)T
(n)W(i;j)(n) NxNyL

for i = 1 to Nx do

f (i;j)(n) = H(j)TX(i)
(n� 1) NxNyNeM

F (i;j)(n) =

�
f (i;j)(n)

F
(i;j)

(n� 1)

�
W(i;j)(n+ 1) = W(i;j)(n) NxNyNeL

�F (i;j)(n)(�(n)be(n)) +Ne
end

end

respectively, where H(j;k) = [h
(j;k)
1 � � � h

(j;k)
M ]T contains the

M impulse response values for the jth-output-to-kth-error
secondary path transfer function.
While the coe�cient updates in Table 1 require only mul-

tiplies and adds to implement, the number of multiplies
needed at each iteration is

CFXLMS = NxNy ((Ne + 1)L+NeM) +Ne; (4)

a quantity that grows precipitously as the numbers of in-
put sensors, output actuators, and error sensors are in-
creased. A single-input, single-output, single-error system
only requires 2L+M + 1 multiplies per iteration to imple-
ment. Clearly, it is desirable to develop implementations
of the multichannel system with complexities that are of
O(NxNy(2L)). Recently, the multichannel adjoint LMS al-
gorithm has been introduced whose complexity is [3]

CALMS = NxNy

�
2L+

�
Ne

Nx

�
M

�
+Ne: (5)

Although the simulated performance of this new algorithm
appears to be similar to that of the multichannel �ltered-X
LMS algorithm, little is known about its theoretical perfor-
mance characteristics or its stability properties. No simple
exact implementation of the multichannel �ltered-X LMS
adaptive algorithm has ever been presented.
In addition, the multichannel �ltered-X LMS adaptive

controller su�ers from poor performance because the er-

ror signals �(k)(n) contain delayed versions of the controller

coe�cients W(i;j)(n). These delays lead to a reduced sta-
bility range for the step size parameter �(n) and slower
convergence speeds [5]. One can approximately calculate
the true LMS coe�cient updates for the controller �lters
by recalculating the Ne error signals using the newest coef-

�cients W(i;j)(n), as described in [6] in the single-channel
case. However, the overall complexity of the multichannel



version of this algorithm is

CLMS = NxNy

�
(2Ne + 1)L+

�
Ne +

Ne

Nx

�
M

�
+Ne; (6)

which is about twice that of the original �ltered-X LMS
controller. No simple way for computing the LMS updates
for a multichannel controller has ever been presented.
In this paper, we provide fast, exact implementations of

both the �ltered-X LMS and LMS adaptive algorithms for
multichannel active noise control systems. Our implemen-
tations produce the same output signals as their original
implementations while requiring many fewer multiplies in
situations where the controller �lter length L is somewhat
larger than the secondary path �lter length M and is much
larger than the number of error sensors Ne. In such cases,
the complexities of our algorithms are O(NxNy(2L)). Ex-
ample simulations show the equivalence of the new algo-
rithms to their more-complex counterparts.

2. FAST MULTICHANNEL FILTERED-X LMS
ALGORITHM

To derive the fast version of the multichannel �ltered-X
LMS algorithm, we can write the coe�cient updates of the
(i; j)th controller �lter coe�cients in Table 1 as

W(i;j)(n + 1) = W(i;j)(n)�X
(i)(n� 1)E (j)(n): (7)

where

X
(i)(n) = [X(i)(n) � � � X(i)(n�M + 1)] (8)

= [X(i)(n) � � � X(i)(n� L+ 1)]T : (9)

and the M -dimensional vector E (j)(n) for 1 � j � Ny is
de�ned as

E
(j)(n) = ["

(j)
0 � � � "

(j)
M�1]

T (10)

= H
(j)(�(n)be(n)): (11)

The update term in (7) resembles a similar term that
appears in the fast a�ne projection (FAP) algorithm [7,
8]. Thus, we can use a similar method as is used in [7, 8]
to e�ciently compute the coe�cient updates. De�ne the

auxiliary coe�cient vector cW(i;j)(n) such that

cW(i;j)(n) = W
(i;j)(n) + eX(i)(n� 1)E

(j)
(n� 1);(12)

where eX(i)(n) is a matrix containing the lastM�1 columns

of X(i)(n) and E
(j)
(n) contains the �rst M � 1 elements of

the vector E(j)(n) de�ned as

E
(j)(n) =

2
6664
"
(j)
0 (n)

"
(j)
1 (n) + "

(j)
0 (n� 1)

...

"
(j)
M�1(n) + � � �+ "

(j)
0 (n�M + 1)

3
7775:(13)

Note that E(j)(n) can be easily updated as

E
(j)(n) =

�
0

E
(j)
(n� 1)

�
+ E

(j)(n): (14)

Using the de�nition of cW(i;j)(n) in (12), we can develop
a simple update for this vector given by

cW(i;j)(n + 1) = cW(i;j)(n)�X(i)(n�M)E
(j)
M�1(n); (15)

Table 2: The fast multichannel �ltered-X LMS algorithm.
Equation # Mults.

eR(n) = eR(n� 1) +

NxX
i=1

�eX(i)(n� 1)x(i)(n)

� eX(i)(n� L� 1)x(i)(n� L)
�

2Nx(M � 1)

for j = 1 to Ny do

y(j)(n) =

 
NxX
i=1

X
(i)T (n)cW(i;j)(n)

!
NxNyL

�eRT (n)E
(j)

(n� 1) +Ny(M � 1)

E
(j)(n) = H(j)(�(n)be(n)) NyNeM +Ne

E
(j)(n) =

h
0

E
(j)

(n� 1)

i
+ E

(j)(n)

for i = 1 to Nx docW(i;j)(n+ 1) = cW(i;j)(n)

�X(i)(n�M)E
(j)
M�1(n) NxNyL

end
end

where EM�1(n) is the last element of E(j)(n). Note that
equation (15) requires only L multiplies to implement.

Because the true coe�cient vector W(i;j)(n) is not avail-
able, we employ correction terms to compute the Ny con-

troller outputs using the vectors fcW(i;j)(n)g. By pre-

multiplying both sides of (12) by X(i)T (n), the quantity

y(i;j)(n) = X(i)T (n)W(i;j)(n) can be written as

y
(i;j)(n) = X

(i)T (n)cW(i;j)(n)

�X
(i)T (n) eX(i)(n� 1)E

(j)
(n� 1): (16)

De�ne the M � 1-dimensional vector eR(n) as

eR(n) =

NxX
i=1

eX(i)T (n� 1)X(i)(n): (17)

Note that eR(n) can be updated as

eR(n) = eR(n� 1) +

NxX
i=1

�eX(i)(n� 1)x(n)

�eX(i)(n� L� 1)x(n� L)
�
; (18)

where eX(i)(n) contains the last M � 1 elements of X(i)(n).
Summing both sides of (16) over 1 � i � Nx, we obtain

y
(j)(n)=

 
NxX
i=1

X
(i)T (n)cW(i;j)(n)

!
� eRT (n)E

(j)
(n� 1) (19)

Equations (11), (14), (15), (18), and (19) de�ne the fast
multichannel �ltered-X LMS algorithm. Table 2 lists the
equations for the algorithm and the number of multiplies
required for each step. The complexity of the algorithm at
each iteration is

C
(f)
FXLMS = NxNy

�
2L+

�
Ne

Nx

+
1

Nx

+
2

Ny

�
M

�
� 2Nx �Ny +Ne: (20)

If Nx = Ny = Ne = N , then as N gets large, the overall
complexity of the system approaches that of N independent
single-channel �ltered-X LMS controllers.



Remark: The coe�cient updates forcW(i;j)(n) in (15) are

of the same form as those for W(i;j)(n) of the algorithm
in [3]. Thus, the multichannel adjoint LMS algorithm is a
modi�ed version of the fast multichannel �ltered-X LMS al-

gorithm in which the Ne correction terms eRT (n)E
(j)
(n�1)

in (19) are ignored. Since the elements of E
(j)
(n � 1) are

scaled by the step size �(n), this approximation is valid for
small step sizes. However, the two algorithms are di�erent
for nonzero step sizes. Since the complexity of the multi-
channel adjoint LMS algorithm is nearly the same as that
of our algorithm in many cases, the latter algorithm is to
be preferred.

3. FAST MULTICHANNEL LMS ALGORITHM

We now derive a fast implementation of the LMS adap-
tive algorithm for the multichannel controller. The single-
channel version of this algorithm is described in [9]. The
multichannel LMS adaptive �lter update is given by

W
(i;j)(n + 1) = W

(i;j)(n)� F
(i;j)(n)(�(n)e(n)); (21)

where the modi�ed error vector e(n) is given by

e(n) = be(n)�
 

NyX
j=1

H
(j)T

Y
(j)(n� 1)

�

NxX
i=1

F
(i;j)T (n)W(i;j)(n)

!
; (22)

where Y(j)(n) = [y(j)(n) � � � y(j)(n � M + 1)]T . If the

secondary path transfer functions contained in fH(j)
g are

accurate, then e(n) in (22) contains the instantaneous errors
of the system and does not depend on past coe�cient values

W(i;j)(k), k < n.

De�ne the vector U(j)(n) as

U
(j)(n) =

 
NxX
i=1

X
(i)T (n)W(i;j)(n+ 1)

!
�Y

(j)(n): (23)

Then, e(n) can be computed as

e(n) = be(n) + NyX
j=1

H
(j)T

U
(j)(n� 1): (24)

We can show that U(j)(n) can be recursively computed as

U
(j)(n) =

�
0

U
(j)
(n� 1)

�
�

NxX
i=1

X
(i)T (n)�(i;j)(n); (25)

where U
(j)
(n) contains the �rst M � 1 elements of U(j)(n)

and �(i;j)(n) =W(i;j)(n+1)�W(i;j)(n). Substituting for

�(i;j)(n) from (21) into (25), we �nd that

U
(j)
(n) =

�
0

U
(j)
(n� 1)

�
�R

(j)
xf (n)(�(n)e(n));(26)

where we have de�ned the M �Ne matrix R
(j)
xf (n) as

R
(j)
xf =

NxX
i=1

X
(i)T (n)F (i;j)(n): (27)

Table 3: The fast multichannel LMS algorithm.

Equation # Mults.

eR(n) = eR(n� 1) +

NxX
i=1

�eX(i)(n� 1)x(i)(n)

� eX(i)(n� L� 1)x(i)(n� L)
�

2Nx(M � 1)

e(n) = be(n) + NyX
j=1

H(j)T
U

(j)(n� 1) NyNeM

e
(�)(n) = �(n)e(n) Ne

for j = 1 to Ny do

for i = 1 to Nx do

f
(i;j)(n) = H(j)T

X
(i)(n� 1) NxNyNeM

f
(i;j)(n� L) = H(j)T

X
(i)(n� L� 1) NxNyNeM

end

R
(j)
xf

(n) = R
(j)
xf

(n� 1)

+

NxX
i=1

�
X

(i)(n)f (i;j)T (n)

� X
(i)(n� L)f (i;j)T (n� L)

�
2NxNyNeM

U
(j)(n) =

�
0

U
(j)

(n� 1)

�
�R

(j)
xf

(n)e(�)(n) NyNeM

y(j)(n) =

 
NxX
i=1

X
(i)T (n)cW(i;j)(n)

!
NxNyL

�eRT (n)E
(j)

(n� 1) +Ny(M � 1)

E
(j)(n) = H(j)

e
(�)(n) NyNeM

E
(j)(n) =

�
0

E
(j)

(n� 1)

�
+ E

(j)(n)

for i = 1 to Nx docW(i;j)(n+ 1) = cW(i;j)(n)

�X
(i)(n�M)E

(j)
M�1(n) NxNyL

end

end

Note that R
(j)
xf (n) can be updated recursively in a fashion

similar to (18).
The method for calculating e(n) in (23){(27) can be com-

bined with the previously-derived algorithm to obtain a fast
version of the LMS algorithm for multichannel active noise
control. Table 3 lists the complete algorithm. The number
of multiplies at each iteration is

C
(f)
LMS = NxNy

�
2L+

�
Ne

�
4 +

3

Nx

�
+

1

Nx

+
2

Ny

�
M

�
� 2Nx �Ny +Ne: (28)

As in the previous case, the complexity of this algorithm is
also O(NxNy(2L)) if NeM is somewhat less than L

Remark: The quantity H(j)TU(j)(n � 1) is of O(�(n)).
Thus, if �(n) is an extremely small value, then this quantity
can be neglected in (24). The resulting coe�cient updates
are then the same as those of the multichannel �ltered-X
LMS controller. The �ltered-X LMS algorithm was orig-
inally derived assuming \slow adaptation" [10]. Our al-
gorithm quantitatively de�nes the di�erence between the
�ltered-X LMS and LMS coe�cient updates and provides
an alternate justi�cation for the former algorithm for small
step sizes.



Table 4: Complexities of the various algorithms for
di�erent controller con�gurations, L = 500, M = 125.

Nx Ny Ne CALMS C
(f)
FXLMS

CFXLMS C
(f)
LMS

CLMS

1 2 2 2502 2998 3502 5998 6002

2 2 2 4502 5246 7002 10246 11502

2 4 2 9002 9994 14002 19994 23002

2 4 4 10004 10996 24004 30996 42004

4 3 4 13504 14868 36004 41868 61504

4 4 4 18004 19492 48004 55492 82004

4 8 4 36004 37998 96004 109998 164004

4 8 8 40008 41992 176008 185992 312008

4 16 4 72004 74980 192004 218980 328004

8 8 8 72008 74984 352008 346084 616008

4 16 16 96016 98992 672016 674992 1216016

8 16 16 160016 163984 1344016 1251984 2400016

16 16 16 288016 293968 2688016 2405968 4768016

4. EXAMPLES AND SIMULATIONS

We now compare the complexities of the fast �ltered-X LMS
and LMS algorithms with those of their original counter-
parts and with that of the adjoint LMS algorithm in [3].
Table 4 shows the number of multiplies per time instant for
each implementation for di�erent choices of Nx, Ny, and
Ne, where L = 500 and M = 125 for the controller and
secondary path �lter lengths, respectively. As can be seen,
the complexities of the fast �ltered-X LMS and LMS algo-
rithms are smaller than their original implementations in
every case, and for systems with large number of channels,
the savings is signi�cant. Moreover, the complexity dif-
ferences between the fast �ltered-X LMS and adjoint LMS
algorithms are minor for most systems. Since the behav-
ior of the fast �ltered-X LMS algorithm is well-understood,
this algorithm is to be preferred. In addition, in cases where
the complexity of the fast LMS algorithm is similar to that
of the original �ltered-X LMS algorithm, current users of
the latter algorithm could potentially achieve delayless LMS
adaptation for the same �lter lengths and sampling rates on
their existing hardware platforms.

We now explore the behaviors of the systems in an active
noise control task. Figure 1 shows the total squared errors,

given by �ltered versions of
PNe

k=1
�(k)2(n), for three di�er-

ent four-input, three-output, four-error active noise control
systems with L = 500 and M = 200-coe�cient controller
and secondary path �lters, respectively, as applied to data
taken from an air conditioner compressor located in an ane-
choic chamber [11]. Shown for comparison are three systems
adapted using the adjoint LMS, fast �ltered-X LMS, and
fast LMS algorithms, respectively, where the step sizes for
each algorithm have been chosen to give fast convergence
without a large increase in the total steady-state mean-
squared error. As can be seen, the LMS algorithm provides
the fastest convergence, as a large step size can be chosen
for this algorithm. The �ltered-X LMS controller has better
performance than the adjoint LMS controller, and the range
of stable step sizes for the �ltered-X LMS algorithm is larger
than that for the adjoint LMS algorithm for this data. For
step sizes less than � � 0:05, however, all three algorithms
perform similarly on this data set, indicating that the ad-
joint LMS algorithm is to be preferred when computational
and memory resources are at a premium. In each case, the
fast versions of the algorithms produced exactly the same
controller outputs as their more-complex counterparts, up
to �nite-precision errors in the computations.

Adjoint LMS (mu = 0.5)
Fast FXLMS (mu = 1)   
Fast LMS (mu = 5)     
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Figure 1: Convergence of the three controllers on air con-
ditioner compressor data.

5. CONCLUSIONS

In this paper, we have presented implementations of the
�ltered-X LMS and LMS algorithms for multichannel ac-
tive noise control that are more e�cient than their standard
implementations when the number of controller channels is
large. The two methods can also be applied to active noise
control algorithms employing normalized step sizes as well
as sgn(�) and other nonlinearities in the coe�cient updates.
Simulations on data taken from a physical active noise con-
trol system show the equivalence of the new algorithms to
their original counterparts.
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