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ABSTRACT

We relate information theoretic blind learning meth-
ods (infomax) and Bussgang blind equalization meth-
ods. The multipath extension of blind source sepa-
ration methods can be seen in the frequency domain
using FIR matrix algebra (matrices of �nite impulse
response �lters). Three forms of Bussgang algorithms
are given. The blind serial update method of Car-
doso and Laheld is related to the infomax objective
of Bell and Sejnowski. The application emphasis is
on speech separation. We demonstrate the robustness
and power of the new techniques by blindly separating
speech signals recorded in a multipath environment.

1. INTRODUCTION

We make an important connection between the in-
formation theoretic infomax blind learning methods of
Bell and Sejnowski [2], Cardoso [5] and the Bussgang
blind equalization methods of [8, 3, 6, 4]. Multiple
input and multiple output linear systems are consid-
ered in an inverse system estimation problem which
does not have access to the input data. We are inter-
ested in estimating input data by means of the inverse
system. This is a source separation problem with mul-
tipath mixtures. A two input and two output system
would be written as

H =

�
h11 h21
h12 h22

�
: (1)

The hij 's are FIR �lters which each represent an acous-
tic multi-path transfer function from source i to sen-
sor j. Referring to Figure 1, a two-sensor, two-source
problem can be written element wise:

y1 = x1 � h11 + x2 � h21 (2)

y2 = x1 � h12 + x2 � h22: (3)

A vector x of source signals passes through unknown
system H. We equalize the outputs of the system y

x
- H

y x̂
Ŵ --

Figure 1: General multichannel channel system.

using an estimate of the inverse system Ŵ to get x̂:
We assume knowledge of the source pdfs.

The linear systems in this problem can be thought
of as \FIR matrices" or simply a matrix with FIR
(�nite impulse response) �lters as elements. Linear
algebra techniques generally apply to these systems
with convolution (or multiplication in the frequency
domain) replacing scalar multiplication of matrix ele-
ments [10].

We begin with the detailed presentation of more
traditional stochastic gradient algorithms, moving to
�nite di�erence approximation algorithms which we
call serial update forms. We present frequency do-
main Bussgang forms, some of which o�er improved
performance over the traditional (stochastic gradient)
blind Bussgang form.

2. TRADITIONAL BUSSGANG
MULTICHANNEL ALGORITHMS

Given access to N sensors with an assumed num-
ber of sources L less than or equal to N , all with un-
known direct and cross channels as in (1), we wish
to recover all of the unknown sources. We are given
only the probability density functions (pdf) of the non-
Gaussian and independent sources.

Given sources of known pdfs, for the ith source we
can use a traditional blind equalization technique to
�nd the optimal cost function Ji = Ejx̂i � gi(x̂i)j
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needed for single channel blind equalization. A multi-
channel cost function can be made as the simple sum
of these single channel blind cost functions:

J = J1 + J2 + : : :+ JN ; (4)



the general form being rooted in Wiener �lter theory.
The multichannel Wiener cost function is (see [10])

J = tr Ef(x� x̂)(x� x̂)Hg MLMS (5)

and the blind form is readily seen

J = tr Ef(x̂� g)(x̂� g)Hg MBLMS; (6)

where g = [g1(x̂1) g2(x̂2) � � � gN (x̂N )]
T ; and gi(�) is

the Bussgang nonlinearity{ the log derivative of the
pdf of xi:

We present adaptive forms: multichannel (training-
based) LMS (MLMS), multichannel blind LMS (MBLMS)
and the fast, blind extension (MBRLS). Equation (5)
is the cost function for MLMS and MBLMS uses equa-
tion (6). The updates are

Ŵ = Ŵ + �(x̂� x)y� MLMS (7)

Ŵ = Ŵ+ �(x̂� g)y� MBLMS (8)

Ŵ = Ŵ+R�1(x̂� g)y� MBRLS: (9)

2.1. STOCHASTIC GRADIENT VERSUS
FINITE DIFFERENCE APPROXIMATION

The traditional forms of LMS adaptive algorithms
are stochastic gradient methods. The original stochas-
tic gradient idea was presented in a pioneering pa-
per by Robbins and Monro 1951 [11]. One year later,
Kiefer and Wolfowitz presented what came to be know
as the �nite di�erence approximation method [9]. A
simpli�ed form for this type of update is

Ŵ = Ŵ(1 + �J): (10)

This serial update enjoys eigenvalue disparity robust-
ness because the input data Y does not directly ap-
pear. We discuss and present powerful and robust
serial update forms of this type.

2.2. FIR MATRICES AS THE WIENER
SOLUTION- BATCH (NON ADAPTIVE)

SOLUTION OF EQUATION (5)

The batch solution which minimizes this multichan-
nel cost function uses the traditional least square pro-
cedure of forming the data matrix and solving for the
estimate of the inverse �lter:

Yi =

2
6666664

yi(1) yi(2) � � � yi(T ) 0 � � � 0
0 yi(1) yi(2) � � � yi(T ) � � � 0
: : :

: : :

: : :

0 � � � yi(1) yi(2) � � � yi(T )

3
7777775

(11)

Y = [Y1 Y2 Y3 � � � YN ] (12)

xi =
�
xi(1) xi(2) � � � xi(T )

�T
(13)

X = [x1 x2 x3 � � � xN]
H

(14)

W = (YYH )�1YXH ; (15)

where N is the number of input and output channels
and T is the number of data samples collected at the
sensors. Here R = YYH is block toeplitz and W is
an FIR matrix.

3. THREE FORMS OF DIRECT
BUSSGANG ALGORITHM COSTS (DBAC)

Through the use of the FIR matrix algebra, the
Bussgang property represented in the frequency do-
main uncovers useful new forms.

The Bussgang property holds for �nite variance iid
data. It only strictly holds at convergence, when the
estimate of the inverse channel is good and the out-
put data x̂ is again iid. It is therefore a good way to
monitor convergence of an algorithm for constructing
a convergent cost function. Bellini [3] discusses how
the Bussgang property can be used to directly obtain
the update equation for a Bussgang equalizer (or sep-
arator). We start with the standard system of

x! H ! y !W ! x̂;

in the frequency domain,

Y = XH (16)

X̂ = YW (17)

and the Bussgang property which says that the auto-
correlation of the output x̂ is equal to the cross cor-
relation of x̂ and g(x̂); where the nonlinearity is of a
special form (the log derivative of the pdf of x).

Efx̂i+kx̂ig = Efx̂i+kg(x̂i)g Bussgang Property
(18)

EfX̂�X̂g = EfX̂��tfg(x̂)gg Frequency Domain
(19)

3.1. FORM 1: BLIND WIENER COST

Divide both sides of (19) by W � (orWH with con-
jugate transpose for the multichannel case).

EfY �X̂g = EfY ��tfg(x̂)gg Bussgang Form 1 (20)



This gives the \Direct Bussgang Algorithm Cost" up-
date form 1:

W =W + �(X � �tfg(x̂)g)Y �; BLMS (21)

or the traditional Bussgang result in the time domain
i.e. (x̂� g(x̂))y�:

3.2. FORM 2: INFOMAX/DIRECT
MINIMUM ENTROPY DECONVOLUTION

Using the basic relations Y = XH and X̂ = YW;

express the left-hand side of (20) in X:

WH�HEfX�Xg = EfY ��tfg(x̂)gg (22)

Since the source data is independent and H = W�1;

we get

1

W �

= EfY ��tfg(x̂)gg Bussgang Form 2 (23)

This gives the direct Bussgang update form 2:

W =W+�(
1

W �

��tfg(x̂)g)Y �; INFOMAX or DMED

(24)
or the DMED (Direct Minimum Entropy Deconvolu-
tion) [10] result.

3.3. FORM 3: DIRECT BUSSGANG
ALGORITHM COST (NEW FORM)

Starting with the Bussgang property itself (in the
frequency domain):

EfX̂�X̂g = EfX̂��tfg(x̂)gg; (25)

de�ning R = EfX̂�X̂g and Rg = EfX̂��tfg(x̂)gg
gives the direct Bussgang update form 3:

W =W + �(R�Rg) DBAC form 3 (26)

Rg is also the discrete Fourier transform of

Efx̂ng(x̂n+k)g;

and g(�) = �Ejxj2
p
0

x
(x)

px(x)
:

4. EQUIVARIENT BLIND SERIAL
UPDATE METHODS

The Cardoso and Laheld EASI blind serial update
cost is,

JEASI�BSU (R;Rs) =
(1�R)

Ejxj2
+

(Rs �RH
s )

Ejxjs

Blind Algorithm Cost

DBAC3 and DBAC3-BSU R�Rg
EASI-BSU (1�R) + (Rg �R�g)

AMARI-BSU 1�Rg

DMED Eflog jW j �x(kx̂)g

BLMS Eflog�x(kx̂)

�G(kx̂)
g

Table 1: Table of FIR polynomial matrix Bussgang
related algorithm cost functions in the frequency do-
main.

Blind Alg. Update

DBAC3 �W = �(R �Rg)

DBAC3-BSU �W = �(R �Rg)W

EASI-BSU �W = �((1�R) + (Rg �R�g))W

AMARI-BSU [1] �W = �(1� Rg)W

DMED �W = �( 1
W�

� �tfg(x̂)gY �)

BLMS �W = �(X̂� �tfg(x̂)g)Y �

Table 2: Table of FIR polynomial Bussgang related
algorithm updates.

whereR is the discrete Fourier transform ofEfx̂nx̂n+kg
andRs is the discrete Fourier transform of Efx̂ng(x̂n+k)g
where g(�) can be of the form jx̂js�2x̂:

The update is (again in the frequency domain)

W =W � �(
(1�R)

Ejxj2
+

(Rs �RH
s )

Ejxjs
)W

and enjoys the equivarient/uniform convergence prop-
erty [5] as well as eigenvalue disparity robustness.

5. MULTICHANNEL BLIND
ALGORITHMS

The frequency domain representation is suited to
multipath generalizations of vector/matrix algebra. With
the algorithms listed in table 1, we can make the ex-
tension to matrix forms. Care must given to right/left
multiply issues and conjugate ! conjugate transpose.

6. TESTS

Speech was modeled as Laplace distributed and thirty
seconds of data was presented to the adaptive algo-
rithm using a freq. domain overlap and save method



as in [7]. A two microphone recording was made in a
room approximately 11' by 10' with two persons talk-
ing simultaneously. An inverse FIR matrix of dimen-
sions 2 by 2 by 2048 was used with the Amari infomax
method. It was noted that all the serial update meth-
ods had similar performance. Microphone separation
was 1.5'. The separation obtained was approximately
12-15 dB.

Another test was performed using one speech source
and one Gaussian source (as presented in [5]). These
sources were mixed on the computer using FIR ma-
trices of size 2 by 2 by 256. This arti�cial mixture
could be separated in less than 10 seconds as is demon-
strated in �gure 3 and in the audio �le included on the
ICASSP cdrom publication.

The audio of the processed result is presented to
show the separation obtained as shown in �gures 2
and 3.

7. CONCLUSION

We have shown that the serial update form of Car-
doso and Laheld [5] for blind learning is related to the
Infomax objective of Bell and Sejnowski [2]. We have
presented FIR matrices, the Bussgang property, and
frequency domain �nite di�erence approximation/serial
update forms as powerful tools for separation of mul-
tipath mixtures.
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Separation results: Mic 1 (mixed talkers), output 1, output 2

Figure 2: Separation results of true acoustic test.
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output 1 is shown as convergence proceeds

Separation results: Mic 1 (mixed speech and noise), output 1

Figure 3: Separation results of speech and Gaussian
source.


