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ABSTRACT

Amusical-tone generator based on physical modeling of the
sound production mechanisms is presented. To the purpose
of making this scheme general for a wide class of musical in-
struments, the nonlinear part of the tone-generator is mod-
eled by a neural network. The system learns its parameters
and the nonlinearity shape by means of nonlinear identi-
�cation procedures based on waveform or spectral match-
ing. Two possible applications of this model are discussed:
sound compression can be obtained when considering the
system as a nonlinear predictor, while sound synthesis can
be obtained by adding control inputs to the network and
by training the system to respond as desired.

1. INTRODUCTION

Synthesis by physical modeling has been broadly explored
in the last years and many models reproducing di�erent
instruments have been proposed. Nevertheless, it is desir-
able to have schemes which are general enough for repre-
senting large families of instruments. This is a prerequisite
for achieving e�cient model-based compression and synthe-
sis. We consider here a model which is su�ciently general
to reproduce a wide class of musical instruments, namely
the class of bowed-string and wind instruments, which can
generate sustained tones and are characterized by a one-
dimensional resonator. Examples of these instruments are
found in the traditional orchestra strings and winds, such as
the violin or the clarinet. These instruments are in principle
more di�cult to model than percussive instruments, since
nonlinearities can never be neglected. Moreover, there is a
non-negligible feedback mechanism between the nonlinear
and the linear part.
Prior work on system identi�cation of speci�c instru-

ments has been developed in [1]-[5]. In [6] a procedure is
given for identifying the parameters of a Karplus-Strong-
like model, which is suitable for percussive sounds repro-
duction.
In this paper we present an identi�cation procedure of

the nonlinear part based on the Genetic Algorithm (GA)
[7] applied to the parameters of a Radial Basis Function
(RBF) network [8], which acts as a generalized nonlinear
map.

2. THE GENERALIZED MUSICAL-TONE
GENERATOR MODEL

In all of the instruments under consideration, there is a lin-
ear part, the resonator, which interacts with a nonlinear
element, called the exciter. The resonator models the part
where vibrations propagate, the exciter is the part responsi-
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Figure 1. The Exciter-Resonator interconnected scheme
used to model a generalized musical-tone generator. The
dashed box points out the nonlinear predictor that will be
used for sound compression.

ble for creating and sustaining the oscillation [9]. Our refer-
ence model (Figure 1) belongs to the class of waveguide syn-
thesis models [10], since the resonator is represented with a
delay line and some �ltering elements. The delay line deter-
mines the fundamental periodicity of sound, while the �lters
take care of e�ects of losses (Low-Pass �lter HLP ), tun-
ing adjustment and dispersion (All-Pass �lter HAP ). This
kind of one-dimensional resonator is applicable to wind and
bowed-string instruments [11]. The novelty of our model
resides in the nonlinear element, the exciter, which is in-
tended to be as general as possible. In classical synthesis
by physical models, the exciter is represented as a nonlinear
instantaneous map with, possibly, a dynamic, linear part.
The map is very dependent on the kind of excitation we are
considering, and in the musical acoustics literature one can
�nd various maps for reeds, jets, bows, etc. We decided to
adopt an instrument-independent map, and to realize it by
means of a RBF network, that is a one-hidden layer net-
work capable of approximating any continuous function if
a su�ciently high number of hidden units is used.
Once the model is given, a procedure for identifying the

model's parameters is needed. The nonlinear optimization
procedure that we adopted is the GA, where each chromo-
some of the population is encoded by a string of real num-
bers, say the RBF network's parameters (centroids, shapes
and heights of the RBF's [8]) together with the coe�cients
of the �ltering elements of the resonator [12]. The �tness
of the j-th chromosome is then evaluated in terms of the
estimation error ej, de�ned as

ej =

NX

n=1

(ud(n)� uj(n))
2 (1)

where N is the window size over which the error will be



accumulated, ud(n) is the desired output and uj(n) is the
reconstructed output of the j-th system. In order to deal
with the real-valued chromosome, a set of proper operators
has been used [13]:

� Selection: among all the individuals of the population,
the ones with lower estimation error (higher �tness)
are selected to survive and to be randomly paired o�
for new chromosome generation. The percentage of
surviving chromosomes is usually �xed at 15-20% of
the entire population.

� Crossover: let w and v the parent arrays selected for
mating. The new chromosome z generated by the two
parents can be written as z = w(a � 1) + va, with
a 2 [0; 1]. It is thus a linear interpolation of all of the
two arrays entries. The operator can also be modi�ed
to randomly select sections of the arrays and perform
a partial linear interpolation.

� Mutation: to prevent the convergence to local min-
ima (non optimal solutions) this operator can randomly
change the value of each chromosome's entry, although
with very low probability. If vij is the j-th entry of the
i-th chromosome and it has been selected for mutation,
the result of the operation is a new entry ~vij = vij+d,
where d is a random value ranging from Vm � vij to
VM � vij (if [Vm; VM ] is the admitted range for that
entry).

� Extinction and Immigration: this operator acts when
the estimation error tends to stagnate due to the fact
that, after several generations, the chromosome pool
can became homogeneous and mutation is not e�cient
anymore. Extinction eliminates all of the chromosomes
in the current generation but the one corresponding to
the minimum estimation error. These individuals are
then replaced by a set of randomly generated ones.

As a �rst example, we consider the identi�cation of model
parameters starting from a sound signal generated by a
model as simple as that of Figure 1, but having a nonlinear
map which is stored in a look-up table. The target non-
linearity adopted has been usefully used for simulating the
clarinet [11]. This is a sort of minimal-requirement test, for
assessing the correctness of the procedure. We were able to
recreate the expected tone using as few as six RBF's, while
the resonator was kept the same as in the target model (and
no All-Pass �lter was considered). The original model was
driven by a step in the mouth-pressure control signal, so
that the nonlinearity remains �xed along the whole sound
length. The results are reported in Figure 2. It is inter-
esting to notice that the tone can now be represented by
less than twenty model parameters. This procedure can be
considered as a sound analysis and synthesis tool, since it
can be used to evaluate the instrument excitation nonlin-
earity given a typical waveform. This information can then
be used to resynthesize instrumental characteristics. We
stress the fact that, as long as the resonator is not known
in advance, the reconstructed nonlinearity may di�er signif-
icantly from the original one, since some form of compen-
sation between the linear and nonlinear part may occur in
the minimization procedure.
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Figure 2. Identi�cation of a known excitation nonlinear-
ity. The RBF Network hidden layer contains six gaussian
units. Note that nonlinearity identi�cation is good within
the range interested by the signal.

3. APPLICATION OF THE
TONE-GENERATOR TO SOUND

COMPRESSION

The main goal of sound compression is to obtain a com-
pact digital representation of sound signals for the purpose
of e�cient transmission or storage. Techniques for sound
compression can be broadly divided into two main cate-
gories: perception-based and production-based techniques.
The �rst category is based on exploitation of the perceptual
properties of the human auditory system (e.g. direct quan-
tization or MPEG/audio) and requires no further informa-
tion on the sound production mechanisms. On the other
hand, perception-based techniques implies the existence of
a suitable model able to well represent the phenomena un-
derlying the production of the given sound. This kind of
approach has been broadly used for speech coding, since
the physics and geometry of the speech production mecha-
nisms are well known, and there are models which represent
them reliably [14].

3.1. Compression Algorithm

The use of a physical model for sound compression pur-
poses leads to a Predictive Quantization scheme [15], as
illustrated in Figure 3. The Prediction block in our case is
a nonlinear predictor, realized by means of the entire inter-
connected system presented in the previous section (dashed
box in Figure 1), while quantization is conducted on the
residual error e(n) = u(n) � ud(n). From the scheme of
the nonlinear predictor in the dashed box it is also clear
that the closed loop computability is respected, due to the
m-samples delay line.
In the compression process that we explored, the param-

eters of the model (RBF network weights and centroids,
and HAP �lter coe�cients) are extracted by explicitly min-
imizing a measure of the di�erence between the original
signal ud(n) and the predicted signal u(n). It is therefore
an analysis-by-synthesis process. The quantized residual er-
ror ê(n) evaluated at compression time can be considered,
together with the predictor parameters, as the compressed
version of the signal: in fact the output of the tone gener-
ator can be �lled with ê(n) in order to obtain the correct



signal at reproduction time, with a reproduction error given
by er(n)=ûd(n)-ud(n). Note that even if this approach does
not directly minimize the di�erence between desired signal
ud(n) and reconstructed signal ûd(n), the reconstruction
error is controlled since it is easy to prove that

E[(e(n)� ê(n))2] = E[(ud(n)� ûd(n))
2] (2)

The minimization procedure that we adopted is the GA,
where the chromosome is encoded as in the previous identi-
�cation example with the addition of the allpass �lter coe�-
cients. We stress the fact that the compression is conducted
by frame segmentation of the input signal. A frame analysis
scheme takes into account slowly time-varying phenomena,
and allows the evaluation of system parameters at a frame
rate lower than the sample rate. Moreover, the spectral con-
tent of the residual error can be exploited when analysing
periodic signal segments: it is possible to update the error
signal and the parameters (evaluated at a starting frame
i) after nf frames, where the (nf + 1)-th frame is the �rst
one presenting an unacceptable output deviation (nf will be
variable and determined run-time). This technique allows
to save computation time when parameter evaluation is not
needed at each frame, and raises compression rate too.
A further quality improvement can be obtained evaluat-

ing, for the frames following the frame i, just a di�erential
residual error signal e0i(n), that can be added to the loop at
reproduction time. The total residual error for the generic
k-th frame following the frame i is then

ei;k(n) = ei;k�1(n) + e
0

i;k(n) =

kX

j=0

e
0

i;j(n); (3)

where e0i;0(n) = ei(n).

3.2. Compression Results

In this section we present some results obtained with the
given compression algorithm. In all cases the neural net-
work used is a four-hidden-units RBF network and Hap is
a fourth order All-Pass �lter. In Figure 4 and Figure 5 two
attack frames of respectively a clarinet and a violin tone are
shown. It is interesting to note how the excitation nonlin-
earities of the two instruments di�er in the range interested
by the signal (as we expected, the violin tone requires a
much more severe deviation from linearity). In Figure 6 a
comparison between the original and residual signal is given
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Figure 3. Nonlinear Predictive Quantizer at compression-
time.

for a pitch-varying clarinet tone. Figure 7 shows how the
nonlinearity acts to compensate for the lack of a more com-
plete physical model of the clarinet keys when analyzing a
pitch transient. In this case frame length and delay line
length evaluation was made by hand, and the two consider-
able spikes visibles in the residual error are due to changes
in the delay line in correspondence of the beginning of two
transient frames.
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Figure 4. Attack frame of a clarinet tone: a) the original
output ud (solid line) vs. the predicted output u (dotted
line); b) residual error; c) exciter nonlinearity.
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Figure 5. Attack frame of a violin tone: a), b) and c) same
as in Figure 4.

4. APPLICATION OF THE
TONE-GENERATOR TO SOUND

SYNTHESIS

The system identi�cation approach illustrated for sound
compression purposes can be adapted to a sound synthe-
sis context. However, there are some important di�erences
that are worth emphasizing. First of all, a synthesis device
requires one or more control inputs to drive the excitation
block. This leads to a RBF network with more than just one
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Figure 6. Compression of a pitch-varying clarinet tone
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Figure 7. Detail of the pitch variation segment

input node, reproducing thus a multidimensional hypersur-
face. In principle, the whole hypersurface can be modeled
by training the system with a trining set of cause-e�ect
examples covering all the instrumental most peculiar char-
acteristics. The second important di�erence resides in the
more di�cult integration of a correction mechanism based
on the residual error added to the loop. In all the exper-
iments we made, the latter seemed to be the most crucial
point to deal with. Due to the intrinsic simpli�cations of
the model that we adopted, we were able to reproduce just
very simple waveforms. Further improvements might come
from the insertion of dynamics in the excitation block. In
a sound synthesis context, the possibility to maintain the
residue-based correction mechanism shows up if we consider
the residual error as an excitation signal. In this case, dur-
ing the training of the system, the construction of a residual
codebook must be performed. Thereafter, at reproduction
time, the right excitation can be selected to reproduce the
desired tone.

5. CONCLUSIONS

The model presented in this paper should be general enough
to represent various musical instruments, in both contexts
of sound compression and sound synthesis. A procedure
for performing sound compression is proposed and some re-

sults of system identi�cation are given. The base model,
used as a nonlinear predictor, has been kept as simple as
possible to be computationally e�cient. However, further
model improvements are expected in order to simulate with
better accuracy the sonic behavior of actual instruments.
Along this line, the main purposes for future research are:
(1) having lower prediction errors while compressing a musi-
cal tone, and (2) having the ability of reproducing complex
waveforms when synthesizing a musical instrument.
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