
MINIMUM PERCEPTUAL SPECTRAL DISTANCE

FIR FILTER DESIGN
1

Shao-Po Wu2 and William Putnam3

2Information Systems Laboratory, Stanford University
3Center for Computer Research in Music and Acoustics, Stanford University

Stanford, CA 94305

clive@isl.stanford.edu, putnam@ccrma.stanford.edu

ABSTRACT

This paper addresses the problem of designing �-

nite impulse response �lters which optimally approxi-

mate desired frequency responses in the sense that they

minimize a perceptual audio spectral measure. This

measure is based on a simpli�ed auditory model simi-

lar to those used in the area of perceptual audio qual-

ity measurement. It is shown that this problem can be

cast as a logarithmic Chebychev approximation prob-

lem, which can be solved e�ciently using recent interior

point methods.

1. INTRODUCTION

A �nite impulse response (FIR) �lter is de�ned by

the input-output relation

y(t) =

n�1X
k=0

h(k)u(t� k); t 2 Z

where u : Z ! R is the input signal and y : Z !
R is the output signal. The �lter order is n, and

h =
�
h(0); h(1); : : : ; h(n�1)

�
2 R

n are the �lter co-

e�cients. The �lter frequency response H : R ! C is

de�ned as

H(!) = h(0) + h(1)e�j! + � � �+ h(n�1)e�j(n�1)!:

Since H is 2� periodic and satis�es H(�!) =

conj
�
H(!)

�
, it su�ces to specify it over the interval

! 2 [0; �].

In this paper we consider designing an FIR �lter

that best approximates a desired frequency response
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perceptually, i.e., given a test signal, the audible di�er-

ence between the �ltered output and the desired output

is minimized. We will use a perceptual spectral distance

(PSD) as an objective method of evaluating the audi-

ble di�erence between the resultant signals. The model

used is similar to those used in the area of perceptual

audio quality measurement; see [10], [6], [4] and [2].

Speci�cally, the �lter design problem is posed as an

optimization problem in which the PSD is minimized.

Furthermore, this problem can be expressed as a loga-

rithmic Chebychev approximation problem.

2. PERCEPTUAL MODEL AND PSD
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Figure 1: Simpli�ed auditory model used to determine

perceptual spectral distance

Auditory models have been used to model the per-

ceptual representations and audible di�erences between

signals. A simpli�ed perceptual model is used which

consists of the following operations. Given a signal s(t),

t 2 Z, the power spectral density, Ss(!) is computed

by taking the squared magnitude of the Fourier trans-

form of the signal. It is then smoothed by a frequency



dependent smoothing function f!:

LSs(!) =

Z �

0

Ss(�)f!(�)d�; (1)

This models the critical bands of the auditory system

[10], and is denoted by L. The last stage of the model
compresses the smoothed power spectrum on a dB scale

to model loudness [6]. Combining these operations re-

sults in the perceptual representation of s(t):

~Ss(!) = logLSs(!) = log

Z �

0

Ss(�)f!(�)d�:

The perceptual spectral distance between two sig-

nals s1(t) and s2(t) over the frequency range 
 2 [0; �]

is de�ned as:

psd
(s1; s2)
�
= max

!2

j ~Ss1(!)�

~Ss2(!)j;

which gives the maximum error between the percep-

tual representations of the two signals. In this manner,

the PSD can be used as a measure of the perceptual

di�erence between two signals.

3. MINIMUM PSD DESIGN

3.1. Problem formulation

Given a test signal s(t) and a desired frequency re-

sponse D(!) (with impulse response d(t)), we would

like to design an n-tap FIR �lter with coe�cients

h 2 Rn that minimize the perceptual spectral distance

between the desired output and the �ltered output over


, i.e.,

minimize psd

�
(s � d)(t); (s � h)(t)

�
; (2)

where � denotes convolution.
Unfortunately (2) is not a convex optimization

problem in h and is intractable in general. However,

it can be reformulated as a convex problem via proper

change of variables shown as follows.

De�ne the autocorrelation coe�cients associated

with h as:

r(t) =

n�1X
k=�n+1

h(k)h(k + t); t 2 Z: (3)

Since r(t) = r(�t), and r(t) = 0 for t � n, it

is su�cient to specify the correlation coe�cients for

t = 0; : : : ; n � 1: r =
�
r(0); : : : ; r(n�1)

�
2 R

n . The

Fourier transform of r(t):

R(!) =

n�1X
k=�n+1

r(k)e�jk! = jH(!)j2 (4)

is the magnitude squared of H(!).

The power spectral densities of (s � h)(t) and (s �
d)(t) are given by R(!)Ss(!) and jD(!)j2Ss(!). Using
r as the design variable, and applying equations (1)

and (4), (2) can be reformulated as

minimize��logLR(!)Ss(!)� logLjD(!)j2Ss(!)
��

subject to R(!) � 0; ! 2 [0; �]; (5)

By the spectral factorization theorem, the extra

constraint R(!) � 0 provides a necessary and su�-

cient condition for r to be a valid autocorrelation func-

tion corresponding to a h 2 R
n . [8, p.231]. Since

LR(!)Ss(!) is a linear function of r, the problem (5)

turns out to be a logarithmic Chebychev approximation

problem on the smoothed spectral density. Moreover,

it is a convex optimization problem.

Without loss of generality, assume the test signal

s(t) is white noise with Ss(!) = 1, ! 2 [0; 2�). It is

shown in [11] and [12] that (5) can be cast as

minimize t

subject to
LjD(!)j2

t
� LR(!) � tLjD(!)j2; ! 2 


R(!) � 0; ! 2 [0; �];
(6)

where t 2 R and r 2 R
n are the variables.

Given a solution of (6), there exists at least one

h 2 R
n that satis�es (3). Such an h can be obtained

via spectral factorization of r. Many algorithms are

available to perform this factorization. For a speci�c

example, see [8].

3.2. A quadratic programming approach

A good engineering approximation of (6) is to dis-

cretize the problem by sampling the frequency domain,

i.e., imposing the constraints on a �nite subset of [0; �],

!i, i = 0; : : : ;m. Additionally, sampling can be done

on a non-uniform grid to model the warped nature of

the bark frequency scale [2]. A rule of thumb in choos-

ing m is m � 15n [1].

Doing this, the problem becomes

minimize t

subject to
LjD(!i)j

2

t
�LR(!i)�tLjD(!i)j

2; !i 2 


R(!i) � 0; i = 0; : : : ;m:
(7)

Since LR(!i) is a linear function in r for each i, (7) is a

quadratic programming problem and can be solved very

e�ciently using the interior-point methods described in

[7] and [11].



Because of discretization, the non-negativity con-

straint cannot be imposed for all ! 2 [0; �], thus one

cannot ensure the existence of h such that (4) holds.

Several sub-optimal techniques have been proposed for

this case. For example, o�set R(!) obtained via solv-

ing (6) to make it non-negative [5][9]. Another ap-

proach is to replace the non-negativity constraint by a

more strict one, i.e., R(!i) � � > 0; i = 0; : : : ;m.

3.3. A semide�nite programming approach

The constraint R(!) � 0, ! 2 [0; �], can be imposed

as a matrix inequality exactly at the cost of introducing

some auxiliary variables using the following theorem [3,

ch2.7.2].

Theorem 1 (positive-real) Given a discrete-time

linear system (A;B;C;D), A stable, and (A;B;C)

minimal. The transfer function

G(z) = C(zI �A)�1B +D

satis�es

G(ej!) +G(ej!)� � 0 for all ! 2 [0; 2�)

if and only if there exists real symmetric matrix P such

that the matrix inequality

�
P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0 (8)

is satis�ed.

To apply Theorem 1, we would like to �nd (A;B;C;D)

in terms of r such that

C(zI �A)�1B +D

=
1

2
r(0) + r(1)z�1 + � � �+ r(n�1)z�(n�1): (9)

An obvious choice is the controllability canonical form:

A =

2
666664

0 0 � � � 0

1 0 � � � 0

1
...

. . .
. . .

...

0 1 0

3
777775

B =

2
6664
1

0
...

0

3
7775

C =
�
r(1) r(2) � � � r(n�1)

�
D =

1

2
r(0):

The realization is not unique, for example,

(T�1AT; T�1B;CT;D) realizes the same transfer

function for non-singular state transformation T .

It can be easily checked that the (A;B;C;D) given

satis�es all the hypotheses of Theorem 1. Therefore the

existence of r and P which satisfy the matrix inequal-

ity (8) is necessary and su�cient for the non-negativity

of R(!), ! 2 [0; 2�). We can pose (6) as the semidef-

inite programming problem (SDP, see [3] and [11]) in

r 2 Rn , t 2 R, and P = P T 2 R
(n�1)�(n�1) :

minimize t

subject to
LjD(!i)j

2

t
� R(!i) � tLjD(!i)j

2; !i2
�
P�ATPA CT�ATPB

C�BTPA D+DT�BTPB

�
� 0;

(10)

and its solution is guaranteed to be factorizable.
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Figure 2: Perceptual spectral representation and approx-

imation error

4. EXAMPLE

Figure 2 depicts the results of the design technique

described in Section 3. In this example, a 50-tap im-

pulse response is approximated by one of length 20.

The solid line is the desired power spectrum, the dashed

line is the minimum PSD design, and the dotted line

is the design obtained using the Remez exchange al-

gorithm. The second plot in Figure 2 shows the error

present in each of the approximations. In this case, the

perceptual optimization technique results in a worst

case error less than 1.75 dB.

5. CONCLUDING REMARKS

The technique presented in this paper is for design-

ing an FIR �lter which best approximates a desired

response in a perceptual sense. In the formulation, the

in�nity norm is chosen to measure the distance between



the perceptual representations of signals. In the case

where the error is below a threshold of perceptibility, it

is the appropriate choice since it makes maximum use

of the available degrees of freedom. The technique can

also be applied to design the minimum order FIR �lter

subject to an upper bound on the PSD. This can be

done by bisecting the interval of possible �lter orders,

and solving a feasibility problem at each iteration until

the minimum order is found.
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