
A Phase Interpolation Algorithm for Sinusoidal Model Based

Music Synthesis

Xiaoshu Qian Yinong Ding

Department of Electrical Engineering DSP Research & Development Center

University of Rhode Island Texas Instruments, Inc., MS 446

Kingston, RI 02881, USA Dallas, TX 75265-5474, USA

qian@ele.uri.edu ding@hc.ti.com

Abstract

This paper presents a least square quadratic phase inter-

polation algorithm for sinusoidal model based music syn-

thesis. This algorithm uses two additions with one parame-

ter per data frame to generate the phase samples of a com-

ponent sinewave. Compared with the cubic phase interpo-

lation algorithm proposed by McAulay and Quatieri [1], the

proposed algorithm is more e�cient in terms of computa-

tional complexity and parameter storage. In the meantime,

it also produces smoother frequency tracks (that is, with

less spurious oscillations). Unlike the existing quadratic

phase interpolation algorithm, where the phase measure-

ments are ignored (\magnitude-only"), the proposed algo-

rithm interpolates phase in a least square sense from both

the phase and the frequency measurements at data frame

boundaries. Thus the resulting phase samples are approx-

imately \locked" to the measured ones. Informal listen-

ing tests on various musical instrument tones indicate that

the proposed algorithm clearly outperforms the magnitude-

only synthesis approach and is qualitatively comparable to

the cubic one.

1 Introduction

In 1986, McAulay and Quatieri [1] of MIT Lincoln Lab-

oratories proposed to represent a speech signal as a sum

of sinusoids parameterized by time-varying amplitude, fre-

quency and phase. Their Sinusoidal Transformation Sys-

tem (STS) based on this model greatly impacted the re-

search and development of sinusoidal modeling-based mu-

sic analysis and synthesis. Serra and Smith [2] of Stan-

ford University extended the sinusoidal model to include a

stochastic part in their Spectral Modeling System (SMS)

for music analysis and synthesis. In both STS and SMS,

the analysis and synthesis are performed on a frame by

frame basis. In analysis, average amplitudes, frequencies

and phases of sinusoidal components are obtained by mea-

suring the magnitudes, frequencies and phases of spectral

peaks in the Fourier transform of a frame of data. In syn-

thesis, these parameters are interpolated to generate indi-

vidual sine waves, and these sine waves are summed to-

gether to form the sinusoidal part of the sound.

Synthesizing individual sine waves in real-time im-

poses a major computational demand. For example, a

modern professional music synthesizer typically requires a

polyphony of 32. Assume each musical tone contains 40

sinusoids on average, then a total of 32 � 40 � 1; 200 si-

nusoids needs to be generated in real-time at a sampling

rate of at least 44.1 kHz. This requirement, combined with

other system overhead, makes the implementation of sinu-

soidal model based music synthesizers extremely di�cult.

Reducing this computational requirement without com-

promising the sound quality is our �rst motivation for the

present work. In STS, the amplitude (in dB) and the phase

track within a data frame are modeled by linear and cu-

bic polynomials, respectively. Clearly, the computational

complexity for generating sinusoidal phase samples can be

reduced by using a quadratic phase polynomial instead of a

cubic one. However, previous e�orts in reducing the phase

polynomial order have not been very successful. The main

reason is that the four phase and frequency measurements

at the two ends of a data frame cannot generally be made

in exact agreement with a quadratic polynomial, which has

only three free parameters. In the so-called \magnitude-

only" synthesis approach, the phase measurements are to-

tally ignored in favor of frequency measurements. This has

been shown to cause degradation in sound quality [1]. In

this paper, we propose to use a quadratic phase model, but

determine the polynomial coe�cients by least square �tting

the model using both frequency and phase measurements.

Unlike the phase track obtained from the magnitude-only

algorithm, this �tted phase track will be approximately

\locked" to the measured phase samples. We think the ex-

act match of the measured phase and frequency with the

synthesized ones is not necessary because the phase and

frequency measurements usually contain noise. The un-

derlying assumption is that a quadratic phase is adequate



in modeling the true frequency and phase. Our informal

listening tests on about two dozens of musical tones con-

�rmed this and revealed no performance degradation from

the cubic phase interpolation algorithm when a quadratic

phase model is used.

Another advantage of the proposed algorithm is that the

resulting frequency tracks of musical tones are smoother

than that obtained from the cubic interpolation algorithm.

It can be shown [3, 4] that when the frequency does not

change much over a data frame, which is typical for musi-

cal tones, the frequency track obtained from the cubic al-

gorithm will always have slopes with opposite signs at the

two ends of each data frame, displaying a \frequency track

oscillation" phenomenon, as illustrated by the solid line in

Figure 1. More speci�cally, The frequency derivatives at

the frame boundaries produced from the cubic algorithm

can be expressed as

_!i(0) =
!i+1 � !i

T
+

6�

T 2
;

_!i(T ) =
!i+1 � !i

T
�

6�

T 2
:

where !i and !i+1 are measured frequencies at the ith data

frame, T is the data frame length and � is a small constant

(j�j < �) introduced in the phase unwrapping procedure

to make the di�erence between wrapped and unwrapped

phase an integer multiple of 2�. Note that the second term

in _!i(0) is always equal in magnitude but opposite in sign

to the second term in _!i(T ). Thus when no signi�cant fre-

quency change occurs across the frame (i.e., the �rst term is

small), the frequency derivatives at the adjacent two frame

boundaries will always be of opposite sign, forcing the fre-

quency track within each frame to have a (either normal or

upside-down) bowl-shape. In general, these `side lobes' will

ride on top of the average frequency slope
!i+1�!i

T
(unless

� = 0, in which case the phase is quadratic). When the

frequency slope is large, one normally would not see those

small ripples on top of the large frequency variation due

to diminished contribution of the second term. Although

the oscillation is typically small and hardly noticeable, and

may be negligible for synthesis of speech, it is deemed un-

desired for synthesis of musical tones.

A third advantage of the proposed algorithm is that it

reduces the parameter storage requirement and the compu-

tational complexity. After completing the least square �t-

ting, we can choose to store the �tted frequency samples at

the frame boundaries in place of the measured ones. Since

the quadratic phase model has only three coe�cients, they

are completely determined by the �tted frequency samples

at the frame boundaries and the phase continuity condi-

tion. This eliminates the need to store the phase samples

at the frame boundaries and simpli�es the computation

needed to determine the polynomial coe�cients. The �t-

0 5 10 15 20 25 30
0

1000

2000

3000

4000

Phase

0 5 10 15 20 25 30

1.314

1.315

1.316

1.317

1.318

1.319

1.32
Radian Frequency

Data frame number

Figure 1: Interpolated frequency tracks obtained from

the cubic interpolation algorithm (solid line) and the

proposed quadratic interpolation algorithm (dotted

line) for a special case where the frequency (stars) is

constant and the phase measurements at frame bound-

aries contain 1% random perturbation.

ted phase track can be obtained by integration of the in-

stantaneous frequency, which is linearly interpolated from

the �tted frequency samples. Although this simple scheme

will allow accumulation of round-o� errors across the data

frame, some alternative schemes given in the next section

will achieve the storage saving without incurring the error

accumulation.

The block diagram in Figure 2 shows how our least

square interpolation algorithm a�ects the complete anal-

ysis/synthesis algorithm in [1]. Note that the �tted phase

samples that need not be saved (or transmitted) are de-

noted by a dashed line. At the analysis stage, the original

cubic interpolation algorithm is replaced by a quadratic

one. The increase in computational cost due to this change

is not critical for many music synthesis applications where

analysis can be done o�-line. At the synthesis stage, our

algorithm yields savings in both computational time and

storage space.

GENERATION

SINUSOIDAL 

A k

θ k

ω k ω k

θk
ANALYSIS

STFT

LS

FITTING
ACCUMULATOR

SYNTHESISANALYSIS

FRAME TO FRAME

INTERPOLATION

LINEAR

dB TO LINEAR

(in dB) A(t)

ω (t)

SYNTHETIC

SOUND

INPUT

SOUND

SUM ALL

SINE WAVES

Figure 2: A block diagram of the complete analy-

sis/synthesis system. Note that the �tted phase sam-

ples that need not be saved (or transmitted) are de-

noted by a dashed line.



2 Proposed quadratic phase interpola-

tion algorithm

We model the phase function within each data frame as

a quadratic polynomial. Thus the phase and frequency in,

say, the ith (0 � i < N) data frame, can be written as

�i(�) = ai + bi� + ci�
2
; !i(�) = bi + 2ci�; (1)

where � = t � ti (0 � � < T ) and T is the frame length.

The polynomial coe�cients are determined by minimizing

the following error

E = �

NX

i=0

(�(ti)� �i)
2 + (1� �)T 2

NX

i=0

(!(ti)� !i)
2 (2)

subject to the phase and frequency continuity constraints.

In the above equation, �i and !i denote, respectively, phase

(unwrapped as in [1]) and frequency at frame boundaries

measured from short time Fourier analysis. The polynomial

coe�cients in Eq. (1) obtained from the minimization can

be expressed [4] as

ai = 1

2
(�i�1 + �i�2);

bi = 1

T
(�i�1 � �i�2);

ci = 1

2T2
(�i � 2�i�1 + �i�2):

(3)

where �i's are solved from the following linear system

A� = �(�0 +�1) + 2(1� �)T (
0 �
1); (4)

where A is an N+2 by N+2 symmetric tridiagonal matrix

with the main diagonal [a
2
; a; � � � ; a; a

2
] and the �rst diago-

nal [b; � � � ; b] with

a = �+ 4(1� �)

b =
�

2
� 2(1� �):

The other variables in Eq. (4) are given by

� = [�
�2; ��1; � � � ; �N�1]

0

;

�0 = [0; �0; � � � ; �N ]
0

;

�1 = [�0; � � � ; �N ; 0]
0

;


0 = [0; !0; � � � ; !N ]
0

;


1 = [!0; � � � ; !N ; 0]
0

:

Detailed study is yet to be made to obtain an optimal

choice of �. However, it can be seen that when � = 4

5
,

b = 0 and the matrix A in Eq. (4) becomes diagonal. It

is noticed [3, 4] that in this case, the proposed algorithm

can be implemented in real time at either analysis or syn-

thesis stage without causing more than one frame delay or

requiring to store the inverse of the system matrix A in

(4). In other words, for this case the `LS FITTING' block

in Figure 2 can be moved to the synthesis side for real-time

synthesis.

We do not recommend using � = 0 or � = 1 although

exact �tting can be achieved in these two cases. As can be

seen from Eq. (2), these two �'s correspond to the cases

where phase and frequency estimates are, respectively, ig-

nored. From our test results, the quality of the synthesized

sounds resulting from these two extreme cases is not of

satisfactory.

As diagrammed in Figure 2, the linear system (Eq. (4))

is normally solved at the analysis stage. At the synthe-

sis stage, a phase sample can be computed using two add

operations as follows. Note that the �nite di�erence of

a quadratic polynomial is a linear function. Thus from

Eq. (1), we have

�!i(n) � �i(n+ 1)� �i(n) = (bi + ci) + 2nci;

assuming the sampling interval is one. A phase sample can

then be computed with the following recursion:

�i(n+ 1) = �i(n) + �!i(n);

�!i(n+ 1) = �!i(n) + (2ci);

where 0 < n < T and the recursion can be initialized by

�i(0) = ai and �!i(0) = bi + ci. The coe�cients ai, bi, and

ci can be obtained in at least three ways. They can be

computed from stored �i coe�cients using Eq. (3). Alter-

natively, we can set ai to be the phase value at the end of

the preceding frame, store bi, and compute ci by

ci =
bi+1 � bi

2T
: (5)

The third way is to store both ai and bi, and compute ci
using Eq. (5). The �rst and the second choices need only

to store one parameter per frame. The �rst and the third

choices do not incur accumulation of round-o� error across

the frame boundaries, which can occur in the second choice

as a result of using the phase value at the end of the preced-

ing frame as the initial phase of the current frame. Thus

those two might be good choices when low precision com-

putation is used. The second and the third choices store

physically more meaningful parameters (initial phase and

frequency values at the frame boundaries), which might be

convenient for sound modi�cation. All three methods, how-

ever, simplify the computation used in the cubic algorithm

to determine the polynomial coe�cients.

3 Test Examples

Some preliminary tests of the algorithm will now be pre-

sented. The test results presented below are obtained with

� = 4

5
for computational simplicity. Figure 1 shows the



frequency track (dashed line) resulting from the proposed

algorithm for the special case where frequency is constant

and phase measurements at frame boundaries contain 1%

random perturbations. It can be seen that although the

�tted frequencies deviate from the measured ones at frame

boundaries, the overall track is closer to the true one and

is smoother than the track (solid line) obtained from the

cubic interpolation algorithm. In Figure 3, we compare the

proposed algorithm with the cubic algorithm for a trumpet

note. The top panel shows the frequency tracks of the low-

est �fteen harmonics (or partials). There one can barely

see any di�erence of the two algorithms because of the large

frequency range plotted. The bottom panel zooms in a por-

tion of the �rst harmonic. Here the di�erence between the

two algorithms becomes apparent and is similar to what is

shown in Figure 1. For this example, we found that the

perceived sound quality of the synthesized trumpet notes

obtained from the cubic and quadratic interpolation algo-

rithms is not distinguishable.

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

fre
qu

en
cy

 (H
z)

Frequency tracks of a trumpet signal

1 1.02 1.04 1.06 1.08 1.1
309

310

311

312

313

314

time (sec)

fre
qu

en
cy

 (H
z)

Portion of the first harmonic

Figure 3: Interpolated frequency tracks obtained from

the cubic interpolation algorithm (solid line) and the

proposed quadratic interpolation algorithm (dashed

line) for a trumpet note.

4 Conclusions

We have described a least square quadratic phase inter-

polation algorithm, which improves the analysis and syn-

thesis algorithm proposed in [1]. The algorithm uses two

add operations to generate each phase sample and needs to

store one parameter per data frame for each phase track.

Compared with the cubic phase interpolation algorithm in

[1], the proposed one is more e�cient in terms of compu-

tational complexity and parameter storage. In the mean-

time, it produces smoother frequency tracks (that is, with

less spurious oscillations). Unlike the existing quadratic

phase interpolation algorithm, where the phase measure-

ments are totally ignored, the proposed algorithm interpo-

lates phase in a least square sense from both the phase and

the frequency measurements at frame boundaries. Thus

the resulting phase samples are approximately locked to

the measured ones. Informal listening tests on various mu-

sical instrument tones indicate that the proposed algorithm

clearly outperforms the magnitude-only synthesis approach

and is qualitatively comparable to the cubic one.

Acknowledgment

The authors would like to express their thanks to Dr.

Don Shaver of Texas Instruments for his support through-

out this project. Dr. Xiaoshu Qian's work was sponsored

by Texas Instruments Incorporated through its student in-

ternship program.

References

[1] R. J. McAulay and T. F. Quatieri, \Speech analy-

sis/synthesis based on a sinusoidal representation,"

IEEE Transactions on Acoustics, Speech, and Sig-

nal Processing, vol. 34, pp. 744{754, August 1986.

[2] X. Serra and J. O. Smith, \Spectral modeling

system: A sound analysis/synthesis system based

on a deterministic plus stochastic decomposition,"

Computer Music Journal, vol. 14, no. 4, 1990.

[3] Y. Ding and X. Qian, \Processing of musical tones

using a combined quadratic polynomial-phase si-

nusoids and residual signal model," submitted to

Journal of Audio Engineering Society, Dec. 1996.

[4] X. Qian, Track frequency components in speech and

music signals. PhD thesis, University of Rhode

Island, Kingston, RI, 1997.


