
ABSTRACT

The digital waveguide mesh is an extension of the one-dimension-
al digital waveguide technique. Waveguide meshes are used for
simulation of two- and three-dimensional wave propagation in
musical instruments and acoustic spaces. The original waveguide
mesh algorithm suffers from direction-dependent dispersion. In
this paper we show that this problem may be reduced by using an
interpolated rectilinear mesh. In the analysis part we show the an-
alytical solution for the wave propagation speed and numerical
simulations of the magnitude response and phase speed in both the
original and the interpolated two-dimensional waveguide mesh al-
gorithms. We demonstrate by simulation that the wave propaga-
tion characteristics of the proposed interpolated waveguide mesh
are independent of direction and thus the remaining errors caused
by dispersion may be corrected with a postprocessor.

1. INTRODUCTION

One-dimensional digital waveguides are a discrete numerical
method widely used to model musical instruments, such as string
and wind instruments [1]. Two-dimensional (2D) and three-di-
mensional (3D) extensions of digital waveguides have been pro-
posed for simulation of plates and drums [2][3], and also for
simulation of room acoustics [4]. Some results of using 3D
waveguide meshes in simulation of the low-frequency behaviour
of a listening room are presented in [5].

In the original multi-dimensional waveguide mesh, the wave
propagation speed and magnitude response are functions of direc-
tion. The error increases with frequency making the technique use-
ful at low frequencies only. One way to avoid this problem is to use
other than rectilinear mesh, such as a tetrahedral or triangular mesh

[6][7][8]. In an earlier study we showed that the wave propagation
speed as well as the magnitude response can be made independent
of propagation direction using an interpolation technique, that al-
lows the wave to travel in 4N directions in anN-dimensional rec-
tangular mesh [9]. In this paper we show that this scheme can be
extended to allow an arbitrary number of propagation directions,
although for low-order interpolation the 4N directions give the best
results. In earlier studies interpolation techniques have been
shown to be useful for one-dimensional digital waveguides
[10][11].

This paper is organized as follows. In section 2 we explain the
basics of multi-dimensional waveguide modeling. Section 3 de-
scribes the interpolated two-dimensional mesh. In sections 4 and 5
we compare the wave propagation speed and magnitude response
of the new interpolated mesh with the original one. Section 6 con-
cludes the paper.

2. MULTI-DIMENSIONAL WAVEGUIDE MESH

A multi-dimensional rectilinear waveguide mesh is a regular array
of 1D digital waveguides arranged along each perpendicular di-
mension, interconnected at their crossings. Two conditions must
be satisfied at a lossless junction connecting lines of equal imped-
ance: (1) the sum of inputs equals the sum of outputs (flows add to
zero) and (2) the signals in each crossing waveguide are equal at
the junction (continuity of impedances). Based on these a differ-
ence equation can be derived for the nodes of anN-dimensional
rectilinear mesh:

(1)
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Figure 1: 2D waveguide mesh structures: a) the original mesh with 4 directions, b) the hypothetical version withH propagation direc-
tions, c) the new deinterpolated waveguide mesh, where the new nodes are spread onto the neighboring nodes by deinterpolation.p̃h
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wherep represents the signal pressure at a junction at time stepn,
subscript c denotes the junction to be calculated and indexl repre-
sents its2N axial neighbors. The derivation of this equation and
the excitation of the mesh are presented in detail in [12]. This
waveguide mesh equation is equivalent to a difference equation
derived from the wave equation by discretizing time and space
with the forward-time-center-space method [13].

3. INTERPOLATED MULTI-DIMENSIONAL
WAVEGUIDE MESH

Ideally, waves should propagate at the same speed to all directions
from every node of the waveguide mesh. In the original waveguide
mesh, however, waves are allowed to travel in the2N axial direc-
tions only. This approximation causes inaccuracies in both the
magnitude response and the wave propagation speed.

In the 2D waveguide algorithm each node in the mesh has four
neighbors, two on both axes (pointspa in figure 1a). These are con-

nected by unit delay elements. To extend this scheme to arbitrary
number of neighbors we add unit delay lines from a node also to

other directions (hypothetical points labelled in figure

1b). In this paper we study only symmetrical cases, where hypo-
thetical nodes are equispaced and all the 2N axial nodes belong to

. The equation that governs this situation is in princi-

ple similar to equation (1). This structure is however purely theo-
retical since most of the hypothetical nodes are none of the mesh
nodes. Therefore other than the axial directions must have some
special treatment.

3.1. Bilinear deinterpolation
To implement unit delays in diagonal directions the signal may be
spread onto the nodes which are closest to the hypothetical points,
as illustrated in figure 1c. This technique is calleddeinterpolation
[14][10], since it is an inverse operation to interpolation. Note that
the terms ‘inverse interpolation’ and ‘decimation’ have been re-
served for other uses in mathematics and digital signal processing.
This is why a new name had to be invented for this method.

The deinterpolation coefficients are the same as those used for
interpolation. Any interpolation technique can be used [11], but we
have chosen the first-order Lagrange interpolation, or linear inter-
polation, for its simplicity. In 2D it is called bilinear interpolation
[15], since it is linear with respect to two variables. Figure 2 rep-
resents the geometry used in calculation of the bilinear interpola-
tion coefficients:

(2)

3.2. Point-spreading function
When all the hypothetical nodes are deinterpolated and their con-
tribution is added to the first part of equation (1), we obtain the dif-
ference equation for the new bilinearly deinterpolated 2D
waveguide mesh:

(3)

wherepl,k representspc and all its neighborspa andpd, andhl,k are

the weighting coefficients of each node. Due to symmetry
hd=h11=h13=h31=h33, ha=h12=h21=h32=h23, hc=h22, with

(4)

The part of equation (1) that operates with the sum of neighbors
can be thought of as a point spreading function (PSF) in 2D signal
processing. It determines how an impulse propagates in different
directions. In general a PSF can be thought of as a two-dimension-
al impulse response. Bilinear PSF’s have been studied in image
processing literature [15]. In the deinterpolated version the only
difference between equations (1) and (3) is in the PSFs. Those
equations can also be expressed by means of a 2D convolution,
where the convolution kernel is one of the following 3×3 matrices:

(5)

wherehorig represents the original algorithm andhdeint the deinter-

polated one. The different scaling factors are due to the added
number of wave propagation directions. The weighting coeffi-
cients as a function of number of propagation directions is illus-
trated in figure 3, which shows that the coefficients are the same
when there are over 30 hypothetical directions. In practice the 8-
directional mesh structure is the most useful one since its wave
propagation characteristics are most circular symmetric.
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Figure 2: Bilinear deinterpolation coefficients are calculated
from this geometry.
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Figure 3: Weighting coefficientshd, ha, hc as function of num-
ber of wave propagation directions.
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4. WAVE PROPAGATION SPEED

The dispersion error of the original 2D waveguide mesh has been
analyzed by Van Duyne and Smith [2]. The same analysis method
is applied here to the new deinterpolated structure. The main prin-
ciple in the analysis is the two-dimensional discrete-time Fourier
transform of the difference scheme with sampling intervalT. In the
transform we take  and , so that the point

 in the two-dimensional frequency space corresponds to

the spatial frequency .

4.1. The original 2D waveguide mesh
For the original difference scheme the Fourier transform is as pre-
sented by Van Duyne and Smith [2]:

(6)

The desired wave propagation speed in the mesh is

, so that waves propagate one diagonal unit in two time
steps. The ratio of the actual speed to the desired speed is

(7)

whereb is

(8)

4.2. Mesh with arbitrary number of directions
Although it is not possible to implement the hypothetical structure
with H directions in the time domain, the Fourier transform may
be computed, and it is

(9)

The equation for the speed ratio is the same as (7), whereb is in a
symmetrical case

(10)

4.3. The deinterpolated 2D waveguide mesh
The Fourier transform for the deinterpolated structure is

(11)

where  and . For the speed ratio

equation (7)b is

(12)

4.4. Stability

The difference scheme (3) is stable whenb is real and  since
then the magnitude of the amplification factor equals to one as
shown by Van Duyne and Smith [2]. In a symmetricalH-direction-
al deinterpolated scheme this means that:

(13)

Coefficients of equation (4) satisfy the condition with the equality
sign.

4.5. Comparison
Figure 4 shows the wave travel speeds in the original, the hypo-
thetical 8-directional and the deinterpolated 8-directional struc-
tures. The frequency scale in all the figures is normalized so that
the Nyquist frequency isωN=0.5. The useful frequency range of

the original waveguide mesh is from zero to half the Nyquist fre-
quency [2][3]. In the original algorithm there is a speed drop of
over 5% in the axial direction compared to the diagonal direction
at half of the Nyquist frequency, while in the deinterpolated
waveguide mesh the wave propagation speed is nearly independ-
ent of direction up to the Nyquist frequency, although the speed is
lower at high frequencies. Comparison of figures 4b) and 4c)
shows that the bilinearly deinterpolated mesh gives a good approx-
imation of the 8-directional mesh.

5. MAGNITUDE AND PHASE RESPONSES

Figure 5 represents the magnitude responses to different directions
in both the original and the deinterpolated mesh. The results are
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Figure 4: Normalized wave travel speeds in a) the original, b) the hypothetical 8-directional, and c) the deinterpolated 8-directional
waveguide mesh structures as a function of normalized frequency.
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from numerical simulations with a large square mesh. The figures
show that in the original mesh the axial and diagonal magnitude re-
sponses are within 1 dB from each other only up to about one
fourth of the Nyquist frequency (0.2417·ωN), whereas in the

deinterpolated mesh the responses are within 1 dB up to half of the
Nyquist frequency (0.4943·ωN). Although the magnitude respons-

es in figure 5b do not follow the ideal response they may be cor-
rected by postfiltering the output. Thus the useful bandwidth is
approximately doubled with the proposed algorithm.

The variation in the phase speed causes frequency distortion
that may be compensated by frequency warping. The warping
function may be obtained from the wave propagation speed using
equations (7) and (12) and calculating the speed as function of fre-
quency to one direction, for example one can set . In a cir-
cularly symmetric case all directions give the same result and
therefore any direction may be chosen when using the 8-direction-
al deinterpolated mesh.

In practice this means that a wider frequency range can be cov-
ered in simulations with the deinterpolated mesh than with the
original mesh when the mesh sizes are the same.

6. SUMMARY AND FUTURE WORK

In this paper we have shown that the wave propagation character-
istics of a 2D waveguide mesh can be made independent of direc-
tion by using interpolation techniques. The best result so far was
achieved by using the 8-directional bilinearly deinterpolated mesh
structure. Although the characteristics are not ideal at high fre-
quencies the distortions may be corrected by postfiltering the out-
put. In practice this means that better quality simulations of
musical instruments and room acoustics can be made with the
same mesh size as before. In the future we are going to study the

use of higher order interpolation which uses larger than 3×3 point
spreading functions and also to extend this scheme to 3D spaces.

REFERENCES

[1] J. O. Smith, “Physical modeling using digital waveguides,”
Computer Music J., vol. 16, no. 4, pp. 74-87, Winter 1992.

[2] S. Van Duyne and J. O. Smith, “The 2-D digital waveguide
mesh,” inProc. 1993 IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, New Paltz, NY, Oct.
17-20, 1993.

[3] S. Van Duyne and J. O. Smith, “Physical modeling with the
2-D digital waveguide mesh,” inProc. 1993 Int. Computer
Music Conf., Tokyo, Sept. 10-15, 1993, pp. 40-47.

[4] L. Savioja, T. Rinne, and T. Takala, “Simulation of room
acoustics with a 3-D finite difference mesh,” inProc. 1994
Int. Computer Music Conf., Århus, Denmark, Sept. 12-17,
1994, pp. 463-466.

[5] L. Savioja, A. Järvinen, K. Melkas, and K. Saarinen, “Deter-
mination of the low-frequency behaviour of an IEC listening
room,” in Proc. Nordic Acoustical Meeting (NAM’96), Hel-
sinki, Finland, June 12-14, 1996, pp. 55-58.

[6] S. Van Duyne and J. O. Smith, “The tetrahedral digital
waveguide mesh,” inProc. 1995 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, New Paltz,
NY, Oct. 15-18, 1995.

[7] S. Van Duyne and J. O. Smith, “The 3D tetrahedral digital
waveguide mesh with musical applications,” inProc. 1996
Int. Computer Music Conf., Hong Kong, Aug. 19-24, 1996,
pp. 9-16.

[8] F. Fontana and D. Rocchesso, “A new formulation of the 2D-
waveguide mesh for percussion instruments,” inProc. XI Col-
loquium on Musical Informatics, Bologna, Italy, Nov. 8-11,
1995, pp. 27-30.

[9] L. Savioja and V. Välimäki, “The bilinearly deinterpolated
waveguide mesh,” inProc. NORSIG’96 IEEE Nordic Signal
Processing Symp., Espoo, Finland, Sept. 24-27, 1996, pp.
443-446.

[10] V. Välimäki, Discrete-Time Modeling of Acoustic Tubes Us-
ing Fractional Delay Filters. Dr. Tech. thesis, Helsinki Uni-
versity of Technology, Lab. of Acoustics and Audio Signal
Processing, Report 37, 1995.

[11] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay - tools for fractional delay filter de-
sign,” IEEE Signal Processing Magazine, vol. 13, no.1, pp.
30-60, Jan. 1996.

[12] L. Savioja, M. Karjalainen, and T. Takala, “DSP formulation
of a finite difference method for room acoustics simulation,”
in Proc. NORSIG’96 IEEE Nordic Signal Processing Symp.,
Espoo, Finland, Sept. 24-27, 1996, pp. 455-458.

[13] J. Strikwerda,Finite Difference Schemes and Partial Differ-
ential Equations. Wadsworth&Brooks, Pacific Grove, CA,
1989.

[14]V. Välimäki, M. Karjalainen, and T. I. Laakso, “Fractional de-
lay digital filters,” inProc. 1993 IEEE Int. Symp. on Circuits
and Systems, Chicago, IL, May 3-6, 1993, vol. 1, pp. 355-358.

[15] R. J. Schalkoff,Digital Image Processing and Computer Vi-
sion. New York, Wiley, 1989.

ξ2 0=

0.1 0.2 0.3 0.4
−5

0

5

10

15

20

25

M
ag

ni
tu

de
 r

es
po

ns
e 

(d
B

)

0.1 0.2 0.3 0.4
−5

0

5

10

15

20

25

0.1 0.2 0.3 0.4

100

110

120

130

P
ha

se
 d

el
ay

 (
sa

m
pl

es
)

0.1 0.2 0.3 0.4

100

110

120

130

Figure 5: Magnitude responses and phase delays to axial (–)
and diagonal(- -) directions in a) original, and b) deinterpolated
8-directional waveguide mesh structures. Dotted line (..) repre-
sents the ideal response in each case.
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