IMPROVED DISCRETE-TIME MODELING OF MULTI-DIMENSIONAL WAVE
PROPAGATION USING THE INTERPOLATED DIGITAL WAVEGUIDE MESH

Lauri Saviojd and Vesa Valimaki

1Lab. of Telecomm. Software and Multimedia  ?Lab. of Acoustics and Audio Signal Processing

Helsinki University of Technology Helsinki University of Technology
Otakaari 1, FIN-02150 Espoo, Finland Otakaari 5A, FIN-02150 Espoo, Finland
Lauri.Savioja@hut.fi Vesa.Valimaki@hut.fi
ABSTRACT [6][71[8]. In an earlier study we showed that the wave propagation

The digital waveguide mesh is an extension of the one-dimension-s'peed as W?” as_the _magnl_tude response can be ma_de independent
f propagation direction using an interpolation technique, that al-

al digital waveguide technique. Waveguide meshes are used foF . D . . .
) : . - .. “lows the wave to travel inNldirections in arN-dimensional rec-
simulation of two- and three-dimensional wave propagation in . :
S . S . éangular mesh [9]. In this paper we show that this scheme can be
musical instruments and acoustic spaces. The original waveguid extended to allow an arbitrary number of propagation directions
mesh algorithm suffers from direction-dependent dispersion. In Y propag '

this paper we show that this problem may be reduced by using aﬁlthough for low-order interpolation th&l4lirections give the best

interpolated rectilinear mesh. In the analysis part we show the an_results. In earlier studies interpolation techniques have been

. - . . _shown to be useful for one-dimensional digital waveguides
alytical solution for the wave propagation speed and numerical 10111
simulations of the magnitude response and phase speed in both tf{e ]'[I'h']. er is oraanized as follo In section 2 we explain the
original and the interpolated two-dimensional waveguide mesh al- IS Paper Is organized as ws. I Section = we expial

gorithms. We demonstrate by simulation that the wave propaga—baS'CS of multi-dimensional waveguide modeling. Section 3 de-

tion characteristics of the proposed interpolated waveguide mesﬁcglggfnth:r ;nttﬁgpv?,:\id trv(\)/oédlranltﬁ)nns?nea;? :rfg -rLgsﬁﬁﬂggsrgsar:)dnze
are independent of direction and thus the remaining errors caused. par propagat peed 9 . P
by di . . of the new interpolated mesh with the original one. Section 6 con-
y dispersion may be corrected with a postprocessor.
cludes the paper.

1. INTRODUCTION 2. MULTI-DIMENSIONAL WAVEGUIDE MESH

One-dimensional digital waveguides are a discrete numerical® muIti-Qimensional rgctilinear waveguide mesh isaregu_lar array
method widely used to model musical instruments, such as stringOf 1D_ d'g',tal waveguides a”anged alo_ng each perpem_ﬂcular di-
and wind instruments [1]. Two-dimensional (2D) and three-di- MeNSion, |nterconnected.at thelr crossings. Two cond|t|0n§ must
mensional (3D) extensions of digital waveguides have been pro_be satisfied at a Ioss!ess junction connecting lines of equal imped-
posed for simulation of plates and drums [2][3], and also for 2NCE: (1) the sum o_flnput_s equals the sum of outpu_ts (flows add to
simulation of room acoustics [4]. Some results of using 3D Ze“?) ant_j (2) the _S|g_nals In each crossing waveguide are eq_ual at
waveguide meshes in simulation of the low-frequency behaviourthe Junction (continuity of impedances). Based on these a differ-

of a listening room are presented in [5] ence equation can be derived for the nodes df-dimensional
In the original multi-dimensional waveguide mesh, the wave "ectilinear mesh:

propagation speed and magnitude response are functions of direc- 1 2N

tion. The error increases with frequency making the technique use- p(n) = N Z p(n—=1)-p.(n-2) @)

ful at low frequencies only. One way to avoid this problem is to use I'=1

other than rectilinear mesh, such as a tetrahedral or triangular mesh
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Figure 1: 2D waveguide mesh structures: a) the original mesh with 4 directions, b) the hypothetical versiopreptgation direc-
tions, c) the new deinterpolated waveguide mesh, where thq?)ﬁlew nodes are spread onto the neighboring nodes by deinterpolation.
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Figure 2: Bilinear deinterpolation coefficients are calculated o
from this geometry. 015
. . . . 0.1+ 1
wherep represents the signal pressure at a junction at timestep ererTeereereereonererereone en
subscript ¢ denotes the junction to be calculated and imégxe- 0.05
sents its2N axial neighbors. The derivation of this equation and 0 : ‘ ‘ : ‘ : ‘
L . S . 0 10 20 30 40 50 60 70 80
the excitation of the mesh are presented in detail in [12]. This Directions

waveguide mesh equation is equivalent to a difference equationFigyre 3: Weighting coefficientsy, h,, h, as function of num-
derived from the wave equation by discretizing time and space g of wave propagation directions.
with the forward-time-center-space method [13]. . ] .
3.2. Point-spreading function
3. INTERPOLATED MULTI-DIMENSIONAL When all the hypothetical nodes are deinterpolated and their con-
WAVEGUIDE MESH tribution is added to the first part of equation (1), we obtain the dif-
Ideally, waves should propagate at the same speed to all directionfs?rence. equat|or'1 for the new bilinearly deinterpolated 2D
from every node of the waveguide mesh. In the original waveguidevv"jlvegulde mesh:
) o 3 3

mesh, however, waves are allowed to travel il2tdexial direc- 2
tions only. This approximation causes inaccuracies in both the Pe(n) = 5 Z Z Mk OPy (N =1) = pe(n—2) ©)
magnitude response and the wave propagation speed. =1 k=1 .

In the 2D waveguide algorithm each node in the mesh has foupvherep, k represents; and all its neighbons, andpg, andny  are

neighbors, two on both axes (poipgsn figure 1a). These are con-  the weighting coefficients of each node. Due to symmetry
nected by unit delay elements. To extend this scheme to arbitrary’d="11=N13=N31=N33 ha=h12=h1=37=h33 Ne=ho, with

number of neighbors we add unit delay lines from a node also to H/4-1 H/4-1
other directions (hypothetical points labellpgl.. py _,  in figure hy = z W, i h, =4 Z We,i
1b). In this paper we study only symmetrical cases, where hypo- =0 =0 ()
thetical nodes are equispaced and all tdi@®al nodes belong to H/4-1 H/4-1
Po--- Py _1 - The equation that governs this situation is in princi- hy =2 z Wy =2 z Wy, i
i=0 i=0

plg simi[ar to equation (1). This st_ructure is however purely theo- The part of equation (1) that operates with the sum of neighbors
e o e e o e, S Be TUghtof a5  pon: spreading uncion (PSF) 1 20 sgnl
= %rocessing. It determines how an impulse propagates in different
special treatment. directions. In general a PSF can be thought of as a two-dimension-
al impulse response. Bilinear PSF’s have been studied in image
processing literature [15]. In the deinterpolated version the only
To implement unit delays in diagonal directions the signal may bedifference between equations (1) and (3) is in the PSFs. Those
spread onto the nodes which are closest to the hypothetical pointssquations can also be expressed by means of a 2D convolution,

as illustrated in figure 1c. This technique is catlethterpolation  \yhere the convolution kernel is one of the following 3natrices:
[14][10], since it is an inverse operation to interpolation. Note that

the terms ‘inverse interpolation’ and ‘decimation’ have been re- 01 hg h, hy
served for other uses in mathematics and digital signal processing. horig _1 10 hgeint = 2 h. h. h (5)
This is why a new name had to be invented for this method. 2 H |a'ca

The deinterpolation coefficients are the same as those used for 01 hy ha Ny
interpolation. Any interpolation technique can be used [11], but we yheren
have chosen the first-order Lagrange interpolation, or linear inter-

ploEI)athn, fo.rtllts f'mphcn.{r'] In 2D 'tt'f Cte\l/\llled b'."n;ar |n|:tferpola2t|on number of wave propagation directions. The weighting coeffi-
[15], since it is linear with respect to two variables. Figure 2 rep- cients as a function of number of propagation directions is illus-

resents the_ geometry used in calculation of the bilinear Ir'terpOIa'trated in figure 3, which shows that the coefficients are the same
tion coefficients:

when there are over 30 hypothetical directions. In practice the 8-
wy i = (1-a,) (& Wy, i= ay LBy directional mesh structure is the most useful one since its wave

@)

we;i = (1-a) E(l_ay) W, = a, [(1_ay) propagation characteristics are most circular symmetric.

3.1. Bilinear deinterpolation

orig Fepresents the original algorithm dng,;:the deinter-
polated one. The different scaling factors are due to the added



b) <)

X
K

oK
)

o,
o,
o
25
ooy
0

o
:'

N
Rt
IR
IR
SN
X
Y

%

o
2
Yo,

o,
o,
2
o
"
%
%%

%5
0%,
"0

X%
S

25
20020,

2
ootel

s
%
o s
e e
s
TR
T
7
,’,’1’1"”""

o,
2%
%%

9%
0%,
55

N
RN
N
R
R
W
NN
SAEN
NS
oae,
oy
SRG
o
o2
%
9%

L7
vo4

N

N
oy
27
X
S
KL
55
355
00620524
%

S

4
7
HIH T T1]
i,
T
1”,’:1111:11:,,',""'"

3

0%

N
N
N
o

27
L
oo

NN
oy

25
55
5

00520
s
&

N
X
N
AN
N
2R3

ﬁ

o
N
',
2%
o

N
2%

A
”’l’llllll'l""'"""",'

7
gy, 7
[

o,
Y i 0ggy 0%,
s LX \ Rl
o )

“"
05 -05 05 05 05 05

Z7

oy

DN
X

0.5 0.5

%2

)
X
N
S
2z
12
25
oo
ST

L7

ormalized speed
Normalized speed
o
o
Normalized speed
o
=]

=)
o

&

Z06

o
n o
I
o
o

o
i
.
[FFZLS
S
S,
L
e
(L2585
CFRGZTA
LFRAZA
YRBLR258258K
0,0"0.00
0.'::‘0
‘

&

Figure 4: Normalized wave travel speeds in a) the original, b) the hypothetical 8-directional, and c) the deinterpolated 8-directional
waveguide mesh structures as a function of normalized frequency.

4. WAVE PROPAGATION SPEED 4.3. The deinterpolated 2D waveguide mesh

The dispersion error of the original 2D waveguide mesh has beenrhe Fourier transform for the deinterpolated structure is
analyzed by Van Duyne and Smith [2]. The same analysis method

is applied here to the new deinterpolated structure. The main prin- PilT, EZT(n 1)+ PilT, EZT(n -1 = (11)
ciple in the analysis is the two-dimensional discrete-time Fourier gp (m[h (eiilT . eJ’EZT . e—iilT . e—jEZT) .
transform of the difference scheme with sampling intéfvhd the H' & &7 at _ _

transform we take x » &  andy - &, , so that the point hd(eJ6+T LT T, e"5+T) +h]

(€1,&5) in the two-dimensional frequency space corresponds to
where 6, = &;+&, andd = §;—§, . For the speed ratio

. 2 2
the spatial frequenc§ = ,/§," + &, equation (7p is

4.1. The original 2D waveguide mesh b= %(ha(cosilT +cosE,T) + (12)

For the original difference scheme the Fourier transform is as pre-
sented by Van Duyne and Smith [2]:

P 1,6,7(N+ 1) +Pg 1 ¢ 7(n-1) = © 4.4, stability

JET & T & T —j&,T
0.5Pg 7¢,7(N)(e ~ +e ° +e te ) The difference scheme (3) is stable whésreal andb| <2  since
The desired wave propagation speed in the mesh isthen the magnitude of the amplification factor equals to one as
shown by Van Duyne and Smith [2]. In a symmetritalirection-
al deinterpolated scheme this means that:

hy(cosd, T + €05 T) +h./2)

¢ = 1/./2, so that waves propagate one diagonal unit in two time
steps. The ratio of the actual speed to the desired speed is

4Th,+4Chy+h,<H (13)
c'(8p &) _ /2 N4 - b° Coefficients of equation (4) satisfy the condition with the equality
———= = 2= [arcta (7) .
c T b sign.
whereb is .
4.5. Comparison
b = cos T+ cost,T (8)

Figure 4 shows the wave travel speeds in the original, the hypo-
thetical 8-directional and the deinterpolated 8-directional struc-
4.2. Mesh with arbitrary number of directions tures. The frequency scale in all the figures is normalized so that
Although it is not possible to implement the hypothetical structure the Nyquist frequency ie=0.5. The useful frequency range of
with H directions in the time domain, the Fourier transform may the original waveguide mesh is from zero to half the Nyquist fre-

be computed, and it is quency [2][3]. In the original algorithm there is a speed drop of
p n+1)+P n—1) = 9 over 5% in the axial direction compared to the diagonal direction
g1 TN D Py 7 r(n-1) © at half of the Nyquist frequency, while in the deinterpolated

H-1 waveguide mesh the wave propagation speed is nearly independ-

%PEJ,EZT(n) Z e ent of direction up to the Nyquist frequency, although the speed is
=0

i’ lower at high frequencies. Comparison of figures 4b) and 4c)
shows that the bilinearly deinterpolated mesh gives a good approx-
imation of the 8-directional mesh.

j (&, cosa; +&,sina) T

The equation for the speed ratio is the same as (7), Wheia a
symmetrical case

g7zt _ 5. MAGNITUDE AND PHASE RESPONSES
b== z cos((&,cosa; + &,sina;)T) (10) i ) ) o
H = Figure 5 represents the magnitude responses to different directions
in both the original and the deinterpolated mesh. The results are
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Figure 5: Magnitude responses and phase delays to axial (-)
and diagonal(- -) directions in a) original, and b) deinterpolated
8-directional waveguide mesh structures. Dotted line (..) repre-
sents the ideal response in each case.
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7
from numerical simulations with a large square mesh. The figures[ ]
show that in the original mesh the axial and diagonal magnitude re-
sponses are within 1 dB from each other only up to about one
fourth of the Nyquist frequency (0.244¥;), whereas in the 8]
deinterpolated mesh the responses are within 1 dB up to half of the
Nyquist frequency (0.494@y). Although the magnitude respons-
es in figure 5b do not follow the ideal response they may be cor-
rected by postfiltering the output. Thus the useful bandwidth is [9]
approximately doubled with the proposed algorithm.

The variation in the phase speed causes frequency distortion
that may be compensated by frequency warping. The warping

use of higher order interpolation which uses larger tha&p®int
spreading functions and also to extend this scheme to 3D spaces.
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