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ABSTRACT

A generalized likelihood ratio test is considered for testing
acoustic environmental models with application to param-
eter inversion using an acoustic propagation code. In the
following, we use the term \hierarchy of models" to de-
note a sequence of model structures M1;M2; . . . in which
each particular model structure Mm contains all previous
ones as special cases. We propose a combined parameter
estimation and multiple sequential test for simultaneously
determining the model order and its parameters: given the
observed data, how many parameters should be included in
the model? The last question is important for the order
selection problem in hierarchies of models with increasing
number of parameters where the observations are corrupt-
ed by additive noise. Monte Carlo simulations show the
behaviour of the sequential test for selecting a model or-
der as a function of the SNR. Finally, the test is applied
to broadband data measured using a vertical array near the
island of Elba in the Mediterranean Sea and compared with
Akaike's Information Criterion.

1. INTRODUCTION

This paper deals with statistical hypothesis tests for acous-
tic environments based on observed data and a replica on
a vertical array of sensors. The replica is generated us-
ing these environmental model parameters and an acoustic
propagation model. The array output is modelled as a su-
perposition of a stationary noise process and the signal of
interest. Both the parameter estimation [1] and testing are
performed by analysis of data in the frequency domain using
a �nite Fourier transform.
The de�nition of objective functions for environmental

parameter estimation and choice of test statistics in hy-
pothesis testing using multi-frequency data is still under
discussion [2]. The asymptotic Gaussianity of data in fre-
quency domain allows de�ning approximate log-likelihood
functions which are maximized for parameter estimation
and used for hypothesis tests based on likelihood quotients
[2]. The proposed generalized likelihood ratio test (GLRT)
is based on multi-frequency data and exploits the asymp-
totic Gaussianity of short-time Fourier-transformed mea-
surement data. This test is related to a solution to the
detection problem in passive sonar, seismics, and radar ap-
plications using a multiple sequential F -test which is based
on a frequency-domain regression [3]. The GLRT compares
the geometric means over frequency of the estimated noise
spectrum under the hypothesis and alternatives. In the case
of only one single source, the test statistic is related to the
sum of Bartlett powers in dB.

2. PROPAGATION AND DATA MODEL

The SNAP normal-mode code [4] is used to compute the
resulting acoustic �eld from a harmonic point source ex-
citation in a shallow ocean waveguide. The observed a-
coustic pressure �eld X(r; t) is sampled at a vertical ar-
ray of N omni-directional hydrophones over space (r 2
fr1; r2; . . . ; rNg � R3) and time (t 2 f0; 1; . . . ;KT � 1g).
These samples are treated as a vector process X[t], with
Xn[t] = X(rn; t). Let the data model in frequency domain
be given by

X(!) = d(!;#)S(!) + U(!) ; (1)

where d(!;#) is the replica steering vector calculated by
SNAP at frequency ! for the geometrical and geo-acoustic
parameters summarized in the parameter vector #. Figs. 1
and 2 show the baseline environment with geo-acoustic pro-
�les and relevant physical parameters. This is a distributed-
parameter model [5]. The unknown geo-acoustic quantities
are distributed in space and must be discretized, before they
can be estimated
Let us denote the set of all models by M�, i.e. the set of

all replica steering vectors d which can be implemented by
SNAP. The parameter vector # is assumed to be element
of an associated parameter set D� � R

r. The mapping
between the parameter set D� and the set of models M� is
termed model structure, cf. [5]. Below, the setsM� and D�
will be given a hierarchical build-up.

3. LOG-LIKELIHOOD FUNCTION

The sampled acoustic �eld X[t] 2 RN is segmented into K
snapshots, tapered with a set of L orthonormal windows
w`[t] [6, 7], and �nite fourier transformed, giving

Xk`(!)
Def
:=

1p
T

T�1X
t=0

w`[t]X[t+kT ]e�j!t;
n

` = 0 . . .L� 1;

k = 0 . . .K � 1

The spectral density matrix is estimated by the sample
mean,

ĈX(!)
Def
:=

1

KL

K�1X
k=0

L�1X
`=0

Xk`(!)X
�

k`(!) : (2)

The conditional distribution of Xk`(!) given the signal
Sk`(!) is known asymptotically: they are approximately
independent and identically complex normal distributed,
with mean d(!; #)Sk`(!), where Sk`(!) is de�ned similar
to Xk`(!), and covariance matrix CU = �(!)I, where I is

the identity matrix. Diagonality of the noise term �(!)I can
be justi�ed by choosing sensor spacing larger than the cor-
relation length of environmental noise. The log-likelihood
function for a broadband source is given for this statistical



model by (vectors are underlined, matrices in boldface, �

denotes conjugate transpose.)

L(#) = � 1

J

JX
j=1

ln(1�B(!j; #)) ; (3a)

with
B(!;#) =

d�(!;#)ĈX
(!)d(!;#)

jd(!;#)j2 tr Ĉ
X
(!)

(3b)

A set of frequencies f!1; . . . ; !Jg covering the spectrum
of the acoustic source is selected in order to minimize the
computational costs associated with the evaluation of (3a).
It can be shown that (3b) is asymptotically Beta(p; q)-
distributed with parameters p = KL and q = KL(N� 1) if
# is constant. However, if # is estimated from the observed

data (# ! #̂), the parameters of the Beta-distribution are
di�erent. Optimization of L(#) is implemented by a com-
bined approach of the globally convergent Genetic Algorith-
m (GA) and locally convergent BFGS updates.

4. ORDERED MODELS AND MULTIPLE
SEQUENTIAL GLRT

We de�ne a hierarchy of model sets fM1;M2; . . .g in which
each Mm (m 2 N) contains all previous ones as special cas-
es: Mm �Mm+1. One can think of the model set Mm as
being obtained from Mm+1 by freezing some components
of #m+1 to speci�c values. The dimension rm 2 N of the
parameter set Dm � Rrm increases monotonically with m.
The model structures are visualized in Fig. 2. The GLRT
statistic is de�ned as the di�erence in optimized values of
the L{functions for each model order. Unfortunately, this
direct approach is unfeasible, because the test statistic de-
pends on the parameters. In [8], a workaround with one
hypothesis and three alternatives was presented. The test
of the smaller model Mm against the bigger model Mm+1

is implemented by a three-step sequential procedure. For
the hierachy, we will use the following hypotheses Hi;m and
alternatives Ai;m, (i = 1; 2; 3):

Step 1: H1;m : X = U ;

A1;m : X = (dm dm+1)

�
Sm

Sm+1

�
+ U ;

with jSmj2 + jSm+1j2 6= 0:

Step 2: H2;m : X = dmSm + U ;

A2;m : X = (dm dm+1)

�
Sm

Sm+1

�
+ U ;

with jSm+1j2 6= 0 and arbitrary Sm:

Step 3: H3;m : X = dm+1Sm+1 + U ;

A3;m : X = (dm dm+1)

�
Sm

Sm+1

�
+ U ;

with jSmj2 6= 0 and arbitrary Sm+1:

We have omitted the dependency on ! in notation of all
quantities and dm is shorthand for d(!; #̂m), with the ML
parameter estimate for model Mm

#̂m = arg max
#m2Dm

L(#m) :

The above hypotheses and alternatives are interpreted in
words as follows:

H1;m no signal in the data
H2;m model Mm generated the data
H3;m model Mm+1 generated the data
A1;m Mm or Mm+1 generated the data
A2;m some component of the data cannot be

adequately modeled by Mm

A3;m some component of the data cannot be
adequately modeled by Mm+1

The proposed simultaneous estimation and test is now for-
mulated in form of a concise algorithm which calculates
m̂; #̂m̂ from the data X:

m̂ := 1
#̂1 := arg max

#12D1

L(#1)

for m := 1; 2; . . . do

#̂m+1 := arg max
#
m+12Dm+1

L(#m+1)

if H1;m cannot be rejected against A1;m then

m̂ :=m� 1, stop \identi�ability problem"

else

if H2;m cannot be rejected against A2;m then

m̂ :=m, stop \this is conservative"

else

if H3;m cannot be rejected against A3;m then

m̂ :=m+ 1, stop

else

m̂ � m+ 1, continue with the loop over m

end of for loop

We need the following GLRT statistics for the algorithm
(i = 1; 2; 3)

Ti;m =
1

J

JX
j=1

ln
�
1 +

n1

n2
Vi;m(!j)

�
; with

Vi;m(!) =
n2

n1

tr[(PAm(!j)�Pi;m(!j))ĈX(!)]

tr[(I�PAm(!j))ĈX(!)]
: (4)

Where we have de�ned the following projection matrices1

P1;m(!) = 0;

P2;m(!) = dmd
�

m=jdmj2;
P3;m(!) = dm+1d

�

m+1=jdm+1j2;
PAm (!) = QmQ

�

m with: Qm = orth (dm dm+1)

The variables V1;m(!) which are used in the �rst step of
the test can be seen as estimates for the signal{ to noise
ratio (SNR) under the hypotheses H1;m. The quantities
V2;m(!); V3;m(!) estimate an increment in SNR in the data
between the models dm 2 Mm and dm+1 2 Mm+1. Thus,
they evaluate incremental goodness-of-�t for the two model
orders m and m+ 1. The GLRT statistics Ti;m are related
to the geometric mean of goodness-of-�t over the range of
frequencies.
The distributions of the test statistics Ti;m do not depend

on #̂m under the hypotheses Hi;m, since it can be shown
that Vi;m(!) is Fn1;n2 -distributed. The distribution of Ti;m
is completely known in the single frequency case (J = 1),
and for the broadband case (J >

� 3), the distribution can be

1orth() denotes orthonormalization of vectors



closely approximated by a Gaussian with mean and variance
given by

�i;m = 	
�
n1 + n2

2

�
�	

�
n2

2

�
; (5a)

�
2
i;m =

1

J

�
	0

�
n2

2

�
�	0

�
n1 + n2

2

��
; (5b)

with 	(z) = d ln�(z)

dz and 	0(z) = d	(z)

dz . The required test
thresholds ti;m;� for a false-alarm rate � are approximat-
ed by the (1 � �)-quantile of the Gaussian. Higher-order
terms of the Edgeworth expansion and more subtle boot-
strap methods are not required in this application. This
was proven by simulations.

5. DEGREES OF FREEDOM

Up to now, nothing has been said about the role of the
degrees of freedom (DOF) of the Fn1;n2 -distribution in the
test. This is a delicate problem, due to the existence of
both linear and non-linear unknown parameters in the es-
timation problem, cf. [2].

Step 1: n1 = KL(rm + rm+1 + 4);

n2 = KL(2N � (rm + rm+1 + 4)) (6a)

Steps 2,3: n1 = KL(rm + rm+1 + 2);

n2 = KL(2N � (rm + rm+1 + 4)) (6b)

The DOF can be made independend of rm; rm+1 if the two
sets of frequencies f!jg used for estimating and testing are
designed to be disjoint. In this case, the DOF are given by
(6ab) for rm = rm+1 = 0.

6. COMPARISON WITH AIC

Akaike's Information Criterion (AIC) represents a more
classic approach to the order selection problem in hierar-
chies of models, cf. [5]. In the present application, the AIC
selects the model order m̂ 2 N which minimizes the criteri-
on.

AIC[m] = �L(#̂m) +
rm

N
: (7)

From this simple form of AIC[m], we can directly calculate
the required increase in likelihood to equalize the cost of
additional parameters. The AIC prefers Mm+1 over Mm

i�
L(#̂m+1)� L(#̂m) >

1

N
(rm+1 � rm) : (8)

7. SIMULATIONS

Figs. 3,4,5 show the results of Monte Carlo simulations. For
each SNR, we conduct 50 independent random experiments.
The data were generated by a selected model in the largest
model structure considered and corrupted by additive noise
at prescribed SNR. In each experiment, we calculated the
maximum-likelihood estimates and applied the proposed al-
gorithm for the �rst model structures by global optimization
of (3a) using a genetic algorithm, analogous to [1]. Monte-
Carlo estimates for the probabilities of the test decisions
as a function of SNR are given in Figs. 3 and 4. Typical
threshold e�ects can be clearly observed in the �gures: at a
characteristic SNR value, the test decides with high prob-
ability in favour of the correct model order. In speci�c in-
tervals of SNR, coarser/downgraded models are prefered to
the correct solution. Each downgraded lower-order model
has its own range in SNR in which it is dominant, indicat-
ing identi�cation problems for higher-order models at the
corresponding SNR levels. Fig. 5 shows the outcome of the

AIC-criterion. If the improvement in maximum-likelihood
betweenMm andMm+1 exceeds 2:083�10�2 per additional
parameter, Mm+1 is prefered.

8. APPLICATION TO NORTH ELBA DATA

The algorithm is applied to experimental acoustic data
which were recorded north of Elba island (Italy) [9, 10].
A record of one minute (KT = 6 � 104) of time samples
was used which were divided into K = 15 snapshots. The
spectral analysis was performed with L = 4 windows and
an analysis bandwidth of W = 2:5

T
. We selected J = 14

frequencies in the range 150 . . . 180Hz for the test. The t-
wo frequency sets for estimation and test were designed to
be disjoint, see Sec. 5.. The calculated T2;m GLRT statis-
tics for the models M1; . . . ;M5 are shown in Fig 6. This
shows that the GLRT selects m̂ � 5 due to the high SNR in
the observed data (� 30 dB). Conversely, we conclude that
the geo-acoustic parameter set D5 results in a signi�cantly
better model d5 2 M5 than all lower-order models in Fig.
2.

9. CONCLUSION

The poposed sequential test can be used for designing
source power spectra at sea and proving feasibility of geo-
acoustic inversions. The test is applied to the real sonar
N{Elba data and compared with Akaike's Information Cri-
terion for selecting model orders. A critical threshold SNR
value must be maintained at sea trials for inversion of a giv-
en set of parameters inside M� for signi�cant results. The
poposed multiple sequential estimation{and{test algorithm
can be used for designing source power spectra at sea and
proving feasibility of geo-acoustic inversions at practical sig-
nal levels.
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