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ABSTRACT

In this paper we present a new technique for the eval-

uation/selection procedures of genetic algorithms, to

be used in the context of parameter estimation prob-

lems. The proposed algorithm uses a priori informa-

tion about the structure of the surface of which an

extremum is being searched. For parameter estimation

problems, the availability, at each iteration of a genetic

algorithm, of a collection of samples of the ambiguity

surface of the problem, enables the determination of

the correlation between the observed ambiguity surface

(at the sampled points) and the predicted ambiguity

surface. The consideration of this information allows

early detection of secondary extrema (which yield an

ambiguity surface which does not correlate well with

the observed one) and thus contributes to speed the

convergence of the algorithm to the global optimal val-

ues. The paper applies the proposed technique to a

source localization problem.

1. INTRODUCTION

Genetic algorithms, originally proposed in [5] are a

powerful optimization tool for underwater acoutics ap-

plications, which have shown their interest in connec-

tion with matched �eld techniques [4, 8, 9]. Genetic

Algorithms (GA's) are generic stochastic search tech-

niques which, under mild conditions on the reproduc-

tion operators and on the objective function, guarantee

an asymptotic convergence to the global optimum even

under the existence of secondary extrema or disconti-

nuities [10]. Requiring no a priori information on the

shape and characteristics of the problem being solved,

they are a general-purpose technique, unsensitive to

the peculiarities of the application being considered.

The price paid for the robustness of GA's is the slow

convergence towards the optimal solution being sought.

It has been observed, [1], that other variants of Evo-

lutionary Algorithms, such as Evolutionary Program-

ming (EP) and, more specially, Evolutionary Strategy

(ES), yield much faster convergence rates. This im-

provement is obtained by using more sophisticated ge-

netic operators, which give ES's and EP's the ability to

self-adapt to the characteristics of the objective func-

tion.

In this paper, we show how a priori information

about the ambiguity structure [3, 6, 7] of the problem

being solved can be used to speed-up the convergence of

GA's. The key observation is that, for inverse problems

in non-homogeneous mediums such as the ocean, the

shape of the function being optimized depends on the

true value of the unknown parameters being sought.

The global shape of the ambiguity surface provides,

in this manner, information about the true parameter

values, and can thus be used to tailor the genetic op-

erators and �tness criteria. Two major modi�cations

are proposed:

� in the evaluation/selection operator: while canon-

ical genetic algorithms for parameter optimiza-

tion individually evaluate each element of the

population, we present a novel evaluation proce-

dure, which uses the values of the objective func-

tion on the whole population for evaluating each

individual. Our method provides better rejection

of secondary maxima, leading in this way to an

increased e�ciency of GA's;

� in the reproduction operators: while these are ho-

mogeneous in canonical GA's, i.e., independent

of the sampled values of the objective function,

we propose to adjust them using the information

provided by the sampled points and the a priori

model. In this way, the generation of new in-

dividuals is directed to regions that have higher

probability of corresponding to the global opti-

mum.

In this paper, only the implementation of the �rst mod-



i�cation is discussed, being presented in the context

of coherent matched �eld passive source localization

problems. We give in the next section a brief formal

description of our approach.

2. COLLECTIVE EVALUATION

Let � denote the complete set of unknown parameters

in the source localization problem (which may include,

for instance, parameters describing the radiated sig-

nal spectrum or environmental parameters for source

focalization [2]). Let A(� : �0) denote the problem

ambiguity function, describing the resemblance of the

probabilistic models corresponding to di�erent para-

meter values.

Assume that at iteration k the population of the

GA is the set of Nk points

Pk = f�k1 ; : : : ; �
k
Ng;

and let the function being optimized be F(�). Genera-
tion of the next population is based on the evaluation

of F at all individuals of Pk:

Fk = fF(�k1 ); : : : ;F(�
k
N )g:

Present GA algorithms determine the �tness of each in-

dividual �ki , �
k
i , as a scaled positive version of F(�ki ),

�k
i = �(F(�ki )), and probabilistically select them for

\reproducing" in the next generation, using their rela-

tive �tness:

ps(�
k
i ) =

�k
iPN

j=1�
k
j

:

Assume now that the objective function is multi-modal,

with important secondary lobes. The individuals falling

in the secondary lobes of the objective function will

be, with high probability (proportional to the impor-

tance of the secondary lobes), selected along with those

falling in the main lobe of the ambiguity function. If

a signi�cant percentage of the population happens to

fall in secondary lobes, or if their �tness is higher than

those of the individuals inside the main lobe, selection

of the next generation on the basis only of Fk can di-

rect the search towards the wrong regions in parameter

space.

We propose a new de�nition of collective �tness,

which makes the �tness of each individual �ki dependent

also on the value of the objective function for the rest

of the population, i.e., on the entire vector Fk and not

just on the value of F(�ki ).
The new de�nition of the evaluation function for

each individual �kn is a measure of the matching be-

tween the sampled points and the predicted ambiguity

surface. It can, for instance, be based on the likelihood

function L(rj�kn) for the following estimation problem:

Given observations

r = f(�1;F1); : : : ; (�N ;FN ))g;

drawn from the known parametric family of probability

distributions

p(rj�o) � g�k
n

�
F1 �A(�1 : �

k
n); : : : ;FN � A(�N : �kn)

�
;

�nd an estimate of �o.

In the above problem, �kn plays the role of the true

value of the parameter being estimated, g�o is a known

distribution, parametrized by �kn which describes the

statistical deviation of the observed ambiguity from

the predicted ambiguity, A(� : �kn), assuming that �kn
is the true value of the parameter. The above formula-

tion assumes that the observed values of the objective

function are distributed around those predicted by the

ambiguity surface, with dispersion that may depend on

the actual parameter value.

Using the overall shape of the observed ambiguity

surface for selecting the next generation of GA's may

e�ectively eliminate secondary extrema of the objec-

tive function. The following discussion explains the

rational behind our approach. If the location of the

secondary lobes predicted by statistical analysis of the

problem does not match the observed local extrema of

F , then they must correspond to spurious extrema. For

concreteness, assume that �i1 is the individual of the

population to which it corresponds the largest value of

the objective function:

F(�i1 ) > F(�j); 8j 6= i1:

and let �i2 be the second best individual. Assume also

that the ambiguity function for the problem is not sym-

metrical. Let A(� : �i1) be the predicted ambiguity sur-

face when the true parameter value is equal to �i1 , and

A(� : �i2) be the corresponding surface when �o = �i2 .

If

A (�i2 : �i1 ) ' 0

but

A (�i1 : �i2 ) ' 1

one can conclude that �i1 is a secondary minimum,

since it yields an ambiguity function that does not

match the observed one. Implementation of this gen-

eral procedure in the context of matched �eld source

localization is described in section 4 of the paper.



3. TARGETED

REPRODUCTION/MUTATION

The second way in which we propose to use a priori

statistical information about the ambiguity structure

of the problem concerns the de�nition of the stochastic

operators that map one population into the next one:

R : �N ! �N

Pk ; Pk+1
:

R is traditionally a pre-de�ned isotropic probabilistic

operator. In standard GA's, R does not depend neither

on the iteration index k, nor on the characteristics of

the population Pk to which they are applied.

We propose the use of generating operators that are

built using the position of the extrema of the collective

�tness de�ned above. More precisely, we claim that

the new population should be obtained by sampling

the following mixture distribution:

p(�k+1jrk) =

NX
i=1

p(rkj�ki )A
0(� : �ki )

rk = frki g
N
i=1; rki = (�ki ;F(�

i
k));

where A0(� : �ki ) is an unit-area version of the ambigu-

ity surface, assuming that �ki is the true value of the

parameter.

4. APPLLICATION TO SOURCE

LOCALIZATION

We apply in this section the proposed technique to a

source localization problem. In the example presented,

we considered the localization of a source in a channel

with a bilinear velocity pro�le, exhibiting multipath.

The axis of the duct occurs at a depth of 914 m, for a

sound velocity of vmin = 1480 m/s, and the gradient

of sound speed is g0 = �0335 and g1 = �:013 s�1 in

the upper an lower layers, respectively. The receiving

antenna is a vertical uniform array with 6 sensors and

inter-element spacing of 15 m. The receiver searches

for the maximum of the Bartlett spectrum,

F(�) =
1

nfreq

fmaxX
f=fmin

hH� Cfh� ;

where Cf is the cross-spectral density matrix at fre-

quency f , and h� is a normalized vector describing the

nominal acoustic �eld received for parameters in vec-

tor �. In our simulations, two frequencies f = 50 Hz

and f = 60 Hz were used. We considered the use of fo-

calization, by estimating the minimum sound velocity

vmin along with the source range and depth, (R, D).

The ambiguity structure of the function being op-

timized can be computed by noting that the cross-

spectral matrices Cf have the following structure:

C = S h�0h
H
�0
+ �;

were �0 denotes the true values of the parameters being

estimated, S is the signal power and � is the noise com-

ponent matrix. For incoherent noise, asymptotically,

�! �2I, yielding the following model for the observed

Bartlett spectrum, dependent on the true parameter

values:

F(� : �0) = SA(� : �0) + �2; (1)

where we de�ned the generalized ambiguity

A(� : �0) =
��hH� h�0��2 :

Model (1) predicts an observed surface that is a scaled

version of the ambiguity surface, plus an unknown con-

stant noise term �2.

At each iteration, k, for each element of the popula-

tion �kn (i.e., for each set of estimates) we compute the

generalized angle between the vector of the observed

spectral samples,

Fk = [F(�k1 ) : : : F(�
k
N )]

T

and the ambiguity surface predicted for �kn:

A(�kn) = [A(�k1 : �
k
n) : : : A(�

k
N : �kn)]

T :

The measure of correlation between the observed and

predicted surfaces is based on equation (1), which can

be written in vector form as

Fk = SA(�kn) + �2 =
�
A(�kn) 1

� � S

�2

�
:

De�ning

M =
�
A(�kn) 1

�
;

it is known that the best estimates of the unknown

parameters are

�
Ŝ

�̂2

�
= M (MTM )�1MTSk = �MSk ;

where �M is the orthogonal projection matrix in the

space spanned by the columns of M , yielding the fol-

lowing correlation between the corresponding estimated

Sk and the observed vector:

C(�k) =
k�MFkk2

kFkk2
:

This correlation measure has been used to evaluate

each individual in each iteration of the genetic algo-

rithm. Use of C(�) alone is not su�cient, since equally
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Figure 1: evolution of the Bartlett spectrum for the

best individual in each iteration.

high values (close to unit) can be reached either when

�kn is a good estimate, or when all the population is

sampling the lower regions of the ambiguity surface.

For this reason, the evaluation function combines the

values of the Bartlett spectrum at each individual with

the normalized correlation :

E(�kn) = F(�kn)C(�
k
n): (2)

Using the product of the two indexes guarantees that

high values of E must correspond both to a large value

of F and to a good agreement of the sampled values to

those predicted by the a priori model.

The function de�ned in (2) has been used to se-

lect the random set of individuals that are mutated

and reproduced at each iteration, as well as the next

generation. Selection of the next population is deter-

ministic, chosing the set of N individuals that present

the largest values of E .

Figures 1{3 compare our algorithmwith a standard

implementation, which bases the selection of individu-

als (for mutation, reproduction and survival) only on

the value of the Bartlett spectrum, revealing the faster

convergence of the proposed technique. The number of

individuals in each population is equal to 6. The ac-

tual source immersion and range are R = 1000 m and

D = 100 m.
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Figure 2: evolution of the estimated depth (indicated

by the best individual in each iteration).
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Figure 3: evolution of the estimated range (indicated

by the best individual in each iteration).
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