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ABSTRACT

In many estimation problems, the set of un-
known parameters can be divided into a sub-
set of desired parameters and a subset of nui-
sance parameters. Using a maximum a pos-

teriori (MAP) approach to parameter estima-
tion, these nuisance parameters are integrated
out in the estimation process. This can result
in an extremely computationally-intensive esti-
mator. This paper proposes a method by which
computationally-intensive integrations over the
nuisance parameters required in Bayesian esti-
mation may be avoided under certain condi-
tions. The propsed method is an approximate
MAP estimator which is much more compu-
tationally e�cient than direct, or even Monte
Carlo, integration of the joint posteriori distri-
bution of the desired and nuisance parameters.
As an example of its e�ciency, we apply the
fast algorithm to matched-�eld source localiza-
tion in an uncertain environment.

1. INTRODUCTION

In many estimation problems, the set of unknown
parameters can be divided into two subsets. The
parameters of major interest comprise one subset
and the remaining parameters comprise the sec-
ond subset. The remaining parameters only serve
to complicate the problem and are referred to as
nuisance parameters. In the maximum a poste-

riori (MAP) approach to parameter estimation,
these nuisance parameters are treated as random

variables with assumed prior probability density
functions and integrated out in the process of es-
timating the desired parameters [1], [2]. Depend-
ing on the number of nuisance parameters, prac-
tical implementation of the MAP estimator can
be extremely computationally-intensive. In the
next section, we will show that under certain con-
ditions a computationally-e�cient approximation
to the MAP estimator can be obtained. E�ciency
is achieved by approximately performing the in-
tegration o�-line prior to the processing of data
observations.

We will derive the MAP estimator following
the development of Richardson and Nolte [3]. Con-
sider the following data model

y = sa(�;	) + n; (1)

where y is a N � 1 vector of observed data, s
is a Gaussian distributed complex random vari-
able, a(�;	) is a N � 1 vector parameterized by
the vectors � and 	, and n is a N � 1 vector of
Gaussian random variables. This model is appli-
cable to array processing and time-series analysis
problems. We will assume that the parameters of
interest are contained in �, while 	 contains the
nuisance parameters. Each of the nuisance param-
eters is assumed to be a random variable with a
known uniform probability distribution. We can
then express the a posteriori probability density
function (pdf) of � as

p(�jy) =
p(�)

p(y)
p(yj�): (2)



Assuming that s, 	, and � are all independent of
each other, the a posteriori pdf of � is given by

p(�jy) = C(y)p(�)

Z
	

exp
n
H(�;	)
G(�;	)

o
G(�;	)

p(	) d	;

(3)
where C(y) is a normalization constant, p(�) is
assumed uniform over the parameter space of in-
terest, and

H(�;	) =
����Ap

2
aH(�;	)R�1n y

���2 ;
G(�;	) = �2Aa

H(�;	)R�1n a(�;	) + 1;
(4)

where �2A is the signal amplitude variance and
Rn = �2nEfnn

Hg where �2n is the noise variance.
The maximum a posteriori (MAP) estimate of �
is obtained by maximizing (3) over �, i.e.,

�̂ = argmax
�

Z
	

exp
n
H(�;	)
G(�;	)

o
G(�;	)

p(	) d	: (5)

If the vectors a(�;	) are normalized to have unit
norm and Rn equals the identity matrix, equation
(5) can be written as

�̂ = argmax
�

Z
	

exp fF (�;	)g p(	) d	; (6)

where

F (�;	) =

�2
A

2

���aH(�;	)y
���2

�2A + 1
: (7)

For numerical implementation of this estimator,
we assume that p(	) is a uniformly distributed
pdf and approximate the integral by a summation

�̂ = argmax
�

MX
j=1

exp fF (�;	j)g ; (8)

where the 	j are vectors of the nuisance parame-
ters sampled from their probability distributions.
A Monte Carlo approach to computing (8) was
proposed in [5]. Thus M inner products between
the vectors a(�;	j); j = 1; : : : ;M and y are
computed for each point in parameter space �.
We remark that usually M � N .

2. COMPUTATIONALLY-EFFICIENT

MAXIMUM A POSTERIORI

PARAMETER ESTIMATION

The exponential in (8) can be approximated over
a �nite interval by a linear approximation of the
form

exp fF (�;	j)g � a fF (�;	j)g+ b: (9)

for some constants a > 0 and b. Substituting this
approximation into (8) gives

�̂ = argmax
�

Mb+
a�2A

2�2A + 2

MX
j=1

���aH(�;	j)y
���2 ;
(10)

or equivalently

�̂ = argmax
�

MX
j=1

���aH(�;	j)y
���2 : (11)

Notice that if the perturbations of the a(�;	j)
vectors for each � over the realizations 	j are
small, then the variability of the values of���aH(�;	j)y

���2 will also be small. Clearly, the

magnitude of the perturbations depends on the
sensitivity of a(�;	j) to the realizations of 	j

and would be dependent on the particular prob-
lem of interest. When the perturbations are small,
(11) will be a close approximation to (8). Equa-
tion (11) can be rewritten as

�̂ = argmax
�

yHRa(�)y; (12)

where

Ra(�) =
MX
j=1

a(�;	j)a
H(�;	j): (13)

It has been our experience that the matrix Ra(�)
is usually well approximated by a matrix of lower
rank. This can be veri�ed by computing the eigen
decomposition Ra(�) = U�UH . Small eigenval-
ues in � can be set to zero [6]. A similar approach
is used in [5] for computing a low-rank approxima-
tion to an environmental constraint matrix used
by the MV-EPC processor. After setting the small
eigenvalues in � to zero, we de�ne �1 to be a di-
agonal matrix containing the non-zero eigenvalues



and U1 as a matrix of the corresponding eigenvec-
tors. A low-rank approximation to Ra(�) is given
by eRa(�) = U1�1U

H
1 . Substituting this approx-

imation into (12) and rewriting the expression as
the norm-squared of a matrix-vector product gives

�̂ = argmax
�

kBa(�)yk2 ; (14)

where Ba(�) = �
1

2

1U
H
1 :

The advantage to using the approximate MAP
estimator of (14) over the MAP estimator of (8)
is that the computation of Ba(�) can be done
o�-line before the processing of data. The num-
ber of on-line inner product computations over
each point in the desired parameter space � is
reduced and equal to q; the rank of Ba(�), where
q � N . In contrast, (8) must compute M in-
ner products over each point � on-line, where
M � N � q. Thus, (14) is a computationally-
e�cient approximation to the MAP estimator and
will be called the fast, approximate MAP estima-
tor or FASTMAP. We conjecture thatRa(�) rank
de�cient implies that the linear approximation in
(9) is accurate. This is a topic of current investi-
gation. FASTMAP has been applied e�ectively in
the array processing technique known as matched-
�eld processing [7] for robustness to environmental
uncertainty. A number of examples of this appli-
cation, including experimental as well as simulated
data, are given in [8].

3. A MATCHED-FIELD PROCESSING

APPLICATION

In this section we will demonstrate the utility of
the FASTMAP estimator using the array process-
ing technique known as matched-�eld processing
(MFP) . MFP is a model-based source localiza-
tion method which is a function of the ocean en-
vironmental parameters. Precise knowledge of the
environmental parameters are required. When the
environmental parameters are uncertain, a MAP
approach to MFP can be used for robustness to the
uncertainty. Using the model of (1) for this case,
� would contain the source location parameters of
range and depth and the uncertain environmental
parameters would be contained in 	. The vector

PARAMETER GENLMIS-S GENLMIS
water depth 102.5�1 m 102.5�2:5 m
surface sound
speed

1500�2.5 m/s 1500�2.5 m/s

bottom sound
speed

1480�2.5 m/s 1480�2.5 m/s

uppermost
layer sound
speed

1600�10 m/s 1600�50 m/s

lowermost
layer sound
speed

1750�10 m/s 1750�100 m/s

bottom
attenuation

.35�0.1 dB/� .35�0:25 dB/�

bottom
density

1.75�0.1 1.75�0.25

Table 1: Uncertainty intervals of environmental
parameters.

a(�;	) is called a replica vector in the matched-
�eld literature.

We will use the Naval Research Laboratory
benchmark environment to test our algorithm. This
is a simulated shallow-water environment, contain-
ing uncertainties, designed as a standardized testbed
for MFP algorithms. It contains seven uncertain
environmental paramaters. The details of this en-
vironment can be found in [5],[8],[9]. We will use
the two cases of environmental uncertainty,
GENLMIS-S and GENLMIS de�ned in Table 1.

We have shown previously that computationally-
e�cient smoothing of the range/depth ambiguity
surface can provide robustness to the gridding of
the surface [10]. This smoothing has been applied
to the FASTMAP estimator in the formulation of
a two-step MFP algorithm called MU-RSWP [8].
It is this algorithm, of which FASTMAP is the
basis, that we will demonstrate here. The perfor-
mance of MU-RSWP was compared to that of the
conventional Bartlett processor over 100 Monte
Carlo trials for both cases. The Bartlett processor
assumed the nominal values of the environmen-
tal parameters. In each trial, a unique randomly
selected source position and environmental real-
ization was chosen. For the GENLMIS-S case,
Bartlett achieved a correct localization percent-



age of 67%, while MU-RSWP achieved 100%. For
the larger uncertainty GENLMIS case, Bartlett
achieved 34%, while MU-RSWP achieved 80%. The
results for MU-RSWP are also consistant with the
theoretical correct localization percentages given
in [5] for the MAP estimator.

A computational comparison of MU-RSWP and
the MAP estimator has also been performed using
the GENLMIS case [8]. The basis for this com-
parison was the number of inner products between
replica vectors and the data vector required to pro-
cess a single snapshot of array data. It was shown
that MU-RSWP provided a substantial 75:1 com-
putational savings over the MAP estimator.

4. CONCLUSION

The FASTMAP estimator, a computationally e�-
cient approximation to the maximum a posteriori

(MAP) estimator, was presented. It was shown
that the FASTMAP estimator is much more com-
putationally e�cient than direct, or even Monte
Carlo, integration of the joint posteriori distribu-
tion. A matched-�eld processing application of the
FASTMAP estimator was shown to illustrate its
e�ectiveness and e�ciency.
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