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ABSTRACT

1. INTRODUCTION

Figure 1. Typical interference spectrum.

Figure 2. Typical signal spectrum.

2. POWER LAW DETECTOR

Naval Undersea Warfare Center Division Newport, Code 3124, Newport, RI 02841-5047 USA

We propose a new non-parametric adaptive detector for

detecting an unknown broadband signal in interference con-

sisting of non-stationary narrowband components and a lo-

cally stationary broadband component. An important fea-

ture of this detector is that it needs no prior information

about the signal or interference. The proposed detector is

based on the integration of the non-parametric power law

detector of Nuttall with robust narrowband interference re-

moval and whitening using a multiple taper spectral esti-

mation-based technique. Experimental results indicate that

the proposed detector outperforms conventional detectors.

Our problem is the detection of a broadband signal in in-

terference consisting of highly non-stationary narrowband

components, a locally stationary colored broadband com-

ponent, plus ambient noise as illustrated in �gures 1 and 2.

By locally stationary, we mean over some small time inter-

val. The interference spectrum shown in �gure 1 has the

form of a , that is, consisting of a continuous

spectrum component (broadband component and ambient

noise) plus a discrete component due to tonals. Usually the

signal and background noise spectrum and their respective

probability density functions (pdf's) are unknown. Because

the signal and noise pdf's and spectrum are unknown, it is

not possible to �nd an optimum detector (e.g., Neyman-

Pearson or uniformly most powerful invariant [1]). Stan-

dard adaptive methods [2] are also di�cult to use since they

generally require a speci�c model for the noise, say autore-

gressive, and similarily for the signal, of which we know

nothing about. Furthermore, automated implementation

of model-based adaptive detectors is not easy because the

model type has to be determined and additional parame-

ters such as the model order must be set on line. Since

little is known about the noise and signal, we prefer a non-

parametric adaptive detector, as opposed to a parametric

detector.

Recently, Nuttall [3] considered the problem of detecting

a Gaussian signal in Gaussian noise, that if present, occu-

pies an arbitrary set of out of a total of DFT bins,

where , the signal bin locations, and signal strength are

all unknown. This is analagous to detecting a signal whose

spectral shape is unknown. He proposed the following class

of non-parametric processors

(1)

where is the th data DFT bin

= ( ) (2)

( ) is the received time series, is a threshold, and , the

power, is a positive real number. Nuttall has determined

experimentally that = 2 5 yields best performance. Note

that the test statistic in (1) is just a summation of the

periodogram bins raised to the th power. Note also that

(1) does not use any information about the signal.

Nuttall derived (1) as a simple power approximation to

the computationally impractical optimum likelihood ratio

test (LRT) statistic (assuming is known)

(3)
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Figure 3. Computer simulation comparing power

law detectors against clarivoyant detector for ,

, and .

x

x

Di�culties

1)

2)

3)

3. SEPARATION OF CONTINUOUS AND
DISCRETE SPECTRUM

when the signal DFT bins have the same power, where is

some weight and

= for = 1 2 = (4)

is the summation over all possible sets of out of

bins. Since the number of permutations is exceedingly

large for most practical problems, the LRT is not compu-

tationally practical.

Remarkably, when is appropriately chosen, the power

law detector signi�cantly outperforms the standard energy

detector

(5)

when the normalized signal bandwidth 1 [3]. In

= 3

= 200 = 12

�gure 3 we show a simulation example comparing the opti-

mum clairvoyant detector (when the signal bin locations are

known) against the power law detector = 2 5 and the en-

ergy detector = 1 for = 3, = 200 and = 12 .

Here the power law detector signi�cantly outperforms the

energy detector and is close to the optimum detector. When

signal bandwith is large, the power law detector performs

nearly as well as the energy detector [3] (the energy detec-

tor is optimum when the signal occupies the entire Nyquist

bandwidth).

The power law detector is attractive because it is non-

parametric and needs no prior information about the signal

spectrum and signal model, unlike AR methods. However,

the power law detector assumes that ( ) is white, which

generally is not true in most practical applications where

the interference components can be highly colored. Observ-

ing that the optimum detector for a signal in colored Gaus-

sian noise consists of a pre-whitener followed by matched

�ltering [1], we propose the following adaptive power law

detector:

~ ( )

~ ( )
(6)

where ~ ( ) is an estimate of the noise spectrum ob-

tained from a signal-free portion of data =

[ ] and ~ ( ) is an estimate of the ob-

served data spectrum from the portion of the

data = [ ] . The detector (6)

structure also suggests that it is has constant false alarm

rate (CFAR) properties, e.g., invariance to scalings. This is

highly desirable in practical applications for calculation of

thresholds and probability of false alarm.

However, it is extremely di�cult to estimate the power

spectrum with conventional periodogram-based methods

(e.g. Bartlett or Welch Periodogram [4, 5]) when interfer-

ing tonal components are present, i.e., the data has a mixed

spectrum consisting of a continuous and discrete part. Some

of the di�culties are:

Tonal componenents tend to be highly non-stationary

due to channel variability and source and receiver mo-

tion. Thus, tonal amplitude or power is di�cult to

estimate.

Over resolution of the spectral microstructure, which is

inherently unstable due to non-stationarity, e.g., fre-

quency drifting due to source and receiver motion, re-

sults in inaccurate estimates of the spectrum.

Unpredictable , , and e�ects due

to windowing are inherent in periodogram-based meth-

ods.

Recall that the underlying broadband noise component

with continuous spectrum was assumed to be locally sta-

tionary for the time encompassing the processing inter-

val, but that the tonal components can be non-stationary.

We propose to adaptively the non-stationary tonal

components from the locally stationary continuous spec-

trum or broadband component. The separation is per-

formed using the robust spectral estimation techniques of

Thomson [4, 5], in which the undesirable tonal components

are �rst removed or to obtain robust estimates of

the background noise and the signal continuous spectrum

components. These spectral estimates are then used

to implement the adaptive power law detector.

In the next section we review multiple taper spectral esti-

mation and the adaptive separation of the continuous part

of the spectrum from the tonals. This is followed by a real

data example comparing the performance of the proposed

adaptive power law dector against the energy detector.

The separation of the continuous spectrum component from

interfering tonals is not easy. Automatic removal of tonals

using least-squares �tting can be di�cult if the background

spectrum has variations that are on the same order as the

tonal levels (e.g., if a weak tonal occurs in a spectral valley,
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3.1. Multiple Taper Spectral Estimation
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Figure 4. Depiction of multiple taper method and
tonal removal.

3.2. Removal of Tonals
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then the direct �tting procedure might onto a nearby

peak of the background spectrum, rather than the tonal).

Periodogram-based methods using smoothers, e.g., median,

are also not robust and work poorly in the presence of

closely spaced tones and high sidelobe leakage [4, 5].

The original goal of Thomson's multiple taper estima-

tor [4, 5] was the spectral analysis of complicated non-

stationary data consisting of lines plus a background com-

ponent with continuous spectrum in which the physical pro-

cesses generating the data were poorly understood. We now

review the multiple taper method.

If we observe contiguous samples from

a zero-mean stationary process, the Fourier transform of

is

~ ( ) = (7)

( ) can also be expressed as the convolution

~( ) =
( )

( )
( ) (8)

where ( ) is a zero-mean orthogonal process, with the

true power spectrum ( ) given by the expectation ( ) =

( ) [4, 5].

Thomson [4, 5] proposed an approximate local solution

of (8) for ( ) in the frequency band [ + ] in

terms of the eigenfunctions of ( ) ( ).

One multiple taper spectral estimate [4, 5] is

~ ( ) =
1

( ) (9)

where is a matrix whose columns are the principal

(DPSS's) ( ),

which are the eigenvectors of the matrix

[ ] =
2 ( )

( )
(10)

arranged to correspond to the eigenvalues in de-

scending order, = [ ] , ( ) =

(1 ), and 2 . is cho-

sen to be su�ciently small so that the true spectrum is ap-

proximately 
at in the interval [ + ], but large

enough to keep the degrees of freedom = 2 of ~( )

as large as possible.

Observing that in (9) acts as an lowpass �lter in the

band [ ], the projection of the frequency downshifted

data vector ( ) onto becomes a bandpass �ltering of

the data to [ + ] [4, 5]. We can now see that ~ ( ) is

approximately the average energy in the band [ +

]. In other words, for a given set of frequency points,

say , the spectrum estimate (9) is analogous to

�ltering into the subbands [ + ] [ +

] [ + ] , as shown in �gure 4, and then

calculating the average energy in each band.

The multiple taper method provides a simple and e�ective

way of locating and removing tonals from the underlying

continuous spectrum background component. To mitigate

the e�ects of background spectrum variations and adajent

tonals, Thomson [4, 5] proposed that the estimation and re-

moval of tonals be done within each subband. The key idea

is that the projection of ( ) onto e�ectively isolates

the frequency band [ + ] from out of band tonals,

and if is properly chosen, the background noise spectrum

is approximately locally or . Thus, e�ects from out

of band tonals and variations in the background spectrum

are minimized.

To estimate and remove the tonals, Thomson used a sim-

ple least-squares �tting procedure which assumed that only

one tonal could be present in the interval [ + ].

The procedure, is depicted in �gure 4 (here generalized to

an arbitrary number of tones). The single tonal assumption

is a major restriction. In real data, one can have several

tonals within each subband. An additional di�culty is that

the tonals are generally non-stationary.

We now make the following modi�cations: To deal with

non-stationarity, we partition the and

vectors of length into contigous smaller sub-

blocks = [ ] and = [ ],

such that the narrowband components are locally station-

ary within each subblock . The multiple tonals are then

estimated in each subband using the method of Umesh [6]

to solve

min ( ) ( )

= 1 2 ; = 1 2 ; = 1 2

(11)
(essentially, the complicated multidimensional least-squares
optimization is solved through a sequence of simple 1-
dimensional searches) and then removed, yielding the es-
timate of the continuous part of the spectrum at frequency
:

where the vector corresponds to a data subblock from

either the or intervals and the ^ and

^ are the solution to (11) in subband frequency and
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4. ADAPTIVE POWER LAW DETECTOR

1.

2.

3.

5. EXPERIMENTAL RESULTS

Figure 5. Spectrogram of real data with and with-
out signal.

Figure 6. Adaptive power law detector compared
against the normalized energy detector using real
data and simulated signal.

6. CONCLUSION
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subblock . Note that ( ) = [1 ] and

the frequency search is restricted to the interval [ ].

Using the continous noise spectrum estimates de-

rived above, the adaptive power law detector in (6) is im-

plemented as follows:

Partition the data into (noise only) and

(noise plus signal) regions. Break up each region

into smaller subblocks such that the narrowband inter-

ference is locally stationary.

Estimate the continuous part of spectrum ~ ( ) and
~ ( ) by removing the tonals using the steps outlined

above (formulas (11) and (12)).

Form the test statistic

~ ( )

~ ( )
(13)

where ~ ( ) and ~ ( ) correspond to the estimates of

the continuous spectrum in the and

regions respectively. The power is determined em-

pirically. We have found by simulation that = 2 5

appears give best results over a wide range of condi-

tions.

We now present some experimental results based on 240

seconds of real single channel noise time series collected in

the ocean. The noise is characterized by the presence of nu-

merous non-stationary interfering narrowband components

from shipping, as shown by the spectrogram in �gure 5.

The proposed adaptive power detector was then applied to

the real data with and without a simulated .1 hz passband

Gaussian signal injected with = 12 . The signal

plus noise spectrogram is shown in �gure 5.

The detector parameters used were: = 055 hz, adja-

cent 4 5 second blocks of and data, = 10

(subblock size of .45 seconds), = 2 5, and the number of

tonals determined by inspection. The measured receiver

operating characterstic curves are plotted in �gure 6 (based

on a total of 105 trials). The curves show that the adaptive

power law detector performs much better than the normal-

ized energy detector (normalized by an estimate of the noise

variance in the region).

Although not plotted here, we did try applying the power

law detector to this data without any tonal removal or

pre-whitening. As expected, it was sensitive to interfering

tonals and performed poorly (since the power law detector

is designed to detect tonals), thus verifying the need for

robust interference removal and whitening.

We have presented a new adaptive non-parametric detec-

tor which needs little prior information about the signal,

such as a detailed model or parameter values. A theoreti-

cal performance analysis of the proposed detector is needed

in order to qualitatively predict detector performance and

rate of adaptation. This will be done in future work.
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