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ABSTRACT

In underwater acoustics, the modeling of impulsive noise
ambients by symmetric-�-stable laws is motivated by the
generalized central limit theorem. However, detection of
stochastic signals under such additive noise is a di�cult task
to implement, due to the lack of a closed-form expression of
the a-posteriori probability density function. In this paper,
we present a suboptimal detector for Gaussian bandpass
transients in impulsive noise that uses a nonlinear, mem-
oryless pre�lter followed by a discrete wavelet transform.
The resulting signals present a Gaussian-like behavior and
the decision is achieved by the comparison of a quadratic
likelihood ratio with a threshold. The tuning of the non-
linearity parameter is performed either by looking at the
receiver operating characteristic or using the Cherno� dis-
tance, that, although resulting in an approximate solution,
is easier to compute. Simulation results are presented by
Monte-Carlo simulation.

1. INTRODUCTION

In many signal processing applications, the assumption of
Gaussianity for the ambient noise is not realistic. For ex-
ample, in underwater acoustics, the e�ects of ice-cracking,
and some forms of reverberation and rifting are frequently
referred [1, 2] as sources of impulsive noise. This is charac-
terized by the presence of occasional bursts or sharp spikes,
corresponding to heavier probability density function (pdf)
tails when compared to Gaussian distributions. This behav-
ior frequently results in distributions with in�nite variance,
stable processes being often used to model such phenomena.

Stable distributions, although lacking some of the nice
results that are available in the Gaussian case for statistical
signal processing, have the advantage of satisfying a gen-
eralized central limit theorem, that states that the sum of
a large number of independent and identically distributed
(i.i.d.) random variables with or without in�nite variance
converges to a stable law. The inexistence of a closed form
expression for the pdf of a stable process, except in some
particular cases (in general, stable laws are described by
their characteristic function) turns di�cult the development
of an optimal likelihood processor.

Detection, classi�cation and localization of signals in im-
pulsive noise have been studied in the last years [1, 2, 3, 4].
Due to the di�culties in handling non-Gaussian distribu-
tions, these works assume that the noise is independent and

the signals are deterministic. However, in passive detection
and classi�cation, this latest assumption is unrealistic.
In this paper, we present a suboptimal binary detector

for Gaussian distributed discrete transient signals embed-
ded in impulsive noise with in�nite variance. The two hy-
potheses consist in noise only (H0), and noise plus signal
(H1), respectively. The processor is represented by a se-
ries of four blocks (�g. 1): the observation process is �rst
transformed through a nonlinearity that modi�es the pdf
of each hypothesis in such a way that its output has �nite
variance. Then, the observation is decomposed under the
discrete wavelet transform (WT). At this point, and un-
der both hypotheses, the observation process distribution
is close to a Gaussian, depending on the scale at which the
WT is performed and on the length of the wavelet �lters.
Based on the covariance matrices of the process at the out-
put of the WT block under both hypotheses, the likelihood
ratio is computed assuming Gaussianity, and compared to a
threshold. An optimization procedure for the tuning of the
nonlinearity is presented. Assuming that the ambient im-
pulsive noise obeys a symmetric-�-stable (S-�-S) distribu-
tion, the receiver performance is addressed by Monte Carlo
simulation.
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Figure 1. Processor block diagram.

2. PROBLEM FORMULATION AND

DETECTOR STRUCTURE

Let us assume that the observation process r(i) is such that

r(i) =

�
n(i); under hypothesis H0

s(i) + n(i); under hypothesis H1,

where i is the discrete time variable, n(i) is a white im-
pulsive noise sequence with zero mean (or median), mutu-
ally independent of s(i), which is a discrete-time zero mean



Gaussian distributed bandpass transient with covariance
matrix A(i; j) = E[s(i)s(j)]. De�ning the discrete time-
frequency power spectral density, S(
; i), as the discrete
Fourier transform of the autocorrelation function A(i; i+p)
over the lag variable p, the process s(i) exhibits a limited
bandwidth in the frequency domain, i.e.,

8i S(
; i) = 0; if j
j 2 [0;
min[ [ ]
max; 2�];

and a nearly �nite duration in the time domain, i.e.,

8
 S(
; i) ' 0; if i =2 [0;Ns]:

The nonlinear block is the hole puncher represented in
�g. 2. The distribution of the process at the output of this
block has a �nite variance that depends on the parameter a.
If a is too small or too large, then a poor performance of the
processor is expected: the variances in both hypotheses will
be either too small or too large and the separability between
the two hypotheses is small. In the sequel, we present a
procedure to tune the parameter a in order to minimize the
Cherno� distance between the two hypotheses.
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Figure 2. Hole puncher nonlinearity.

The second block of �g. 1 operates a wavelet transform at
the output of the nonlinearity. In [5, 6], we showed that the
WT is suited for the decomposition of Gaussian bandpass
transients, by reducing their complexity, leading to sparse
covariance matrices of small order, and being adapted to
real-time processing.
Using Mallat's recursive algorithm for image decomposi-

tion [7, 8] in its one-dimensional form,

c
j

k =
X
i

h(i� 2k)c
j�1
i

d
j

k =
X
i

g(i � 2k)cj�1i

; (1)

where h(i) and g(i) are Daubechies [8] �nite length �lters,
the observed pre�ltered discrete time sequence c0i = r(i)
is decomposed in the subsequences d1, d2, ..., dm and cm.
The recursive �ltering equations (1) can also be expressed
in terms of the original signal r(i) as the internal product

c
j

k =< r; h
j

k >

d
j

k =< r; g
j

k >
: (2)

Filters h(i) and g(i) are, respectively, lowpass and high-
pass �lters. While cm represents a smoothed version of r,
sequences dj stand for �ltered versions of r in di�erent fre-
quency bands [5, 6]. The internal product < r; g

j

k >, is rel-

evant only when both signal r and �lter g
j

k exhibit overlap-
ping frequency bands. Consequently, performing the WT
decomposition of r until the lowpass residue correspond-
ing to < r; hmk > is close to zero, and neglecting those se-
quences dj for which < r; g

j

k > is also close to zero, one gets
an approximate representation of r based on a smaller set
of frequency scales. Thus, a single coe�cient djk is, under
both hypotheses, the result of a weighted sum of random
variables,

d
j

k =

NjX
i=1

r(i)z(i)gjk(i) (3)

where Nj is the length of the �lter gjk at scale j, and

z(i) =

�
1; if jr(i)j � a

0; otherwise

stands for the nonlinear function represented in �g. 2.
Under hypothesis H0, the terms r(i)z(i) = n(i)z(i) are

i.i.d. with �nite variance. By Ljapunov's central limit the-
orem (CLT), the in�nite sum of independent random vari-
ables (RV), not necessarily with the same variance or dis-
tribution, tends to a Gaussian if and only if they satisfy the
Lindberg condition [9]. Accordingly to this condition, a RV
that is composed by a large number of independent in�nites-
imal RV (i.e., whose dispersions are very small with respect
to the dispersion of the sum), has a distribution which, for
all practical purposes, may be regarded as normal. This is
the case for large values of both the �lter length Nj and the
nonlinearity parameter a (corresponding to a high probabil-
ity of z(i) taking the value 1). Since the �lters gjk form an
orthonormal set, the coe�cients covariance matrix under
hypothesis H0 is

CH0
= �

2
aI;

where I denotes the identity matrix, and

�
2
a =

Z a

�a

x
2
fn(x)dx;

where fn(x) is the pdf of the impulsive noise. Although it
may not have a closed-form expression, in the case of stable
noise it is easily computed by taking the inverse Fourier
transform of the characteristic function.
Under hypothesis H1, we have

d
j

k =

NjX
i=1

s(i)z(i)gjk(i) +

NjX
i=1

n(i)z(i)gjk(i): (4)

As for hypothesis H0, for large values of a, the second term
on the right-hand side (rhs) of eq. (4) is approximately
Gaussian with a covariance matrix given by CH0

. Regarding
the �rst term, let us point out that, for large a, the nonlinear
function z(i) can be approximated to

z(i) '

�
1; if jn(i)j � a

0; otherwise:
(5)



In fact, although z(i) is a random sequence depending on
both n(i), s(i) and the parameter a, for values of a su�-
ciently large compared to the maximum standard deviation
of the process, we can assume that the signal is, in gen-
eral, not a�ected by the nonlinearity, except when the noise
bursts largely emerge. In the above context, the �rst term
on the rhs of eq. (4) consists mainly in a linear decomposi-
tion of a Gaussian process, being approximately Gaussian
distributed. Consequently, the global pdf of djk is also ap-
proximately Gaussian.
From (3), the elements of the coe�cients covariance ma-

trix CH1
are given by

E[djkd
q
p] =

X
i;l

E[z(i)z(l)r(i)r(l)gjk(i)g
q
p(l)]: (6)

As referred to before, for a su�ciently large, z(i) depends
mostly on the impulsive noise, see eq. (5). Finally, since
transient signal and noise are mutually independent, the
elements of the covariance matrix CH1

become

E[djkd
q
p] ' �

2
a�j�q�k�p +

+
X
i;l

A(i; l)E[z(i)z(l)]gjk(i)g
q
p(l)

' �
2
a�j�q�k�p + E[z2]�1 +E[z]2�2; (7)

where
�1 =

X
i

A(i; i)gjk(i)g
q
p(i)

and
�2 =

X
i

X
l6=i

A(i; l)gjk(i)g
q
p(l):

In (7), for the nonlinear function considered herein,

E[z] = E[z2] =

Z a

�a

fn(x)dx:

The parameter a needs to be adapted in order to mini-
mize the receiver probability of error (PE). This procedure
is achieved by Monte Carlo simulation, and by looking at
the receiver operating characteristics (ROCs). For every
value of a, it is necessary i) to compute the covariance ma-
trices at the output of the WT block under both hypotheses,
and ii) to proceed with Monte Carlo simulation in order to
determine the ROCs. Alternatively, we can also maximize
the Cherno� distance [10] between the covariance matri-
ces under both hypotheses at the output of the WT block.
Since, in both hypotheses, the process has zero mean value,
then the Cherno� distance is given by

max
�

�(�) = max
�

�
1

2
ln
j�CH0

+ (1� �)CH1
j

jCH0
j�jCH1

j(1��)

�
; 0 � � � 1:

In the Gaussian case, the Cherno� distance leads to a
closed-form expression of the Cherno� bound, that consists
in an upper bound for the PE. Then, the value of the pa-
rameter a that leads to a maximum value of the Cherno�
distance is expected to give a good separability between the
two hypotheses, as it minimizes the Cherno� bound of the
PE.

The likelihood ratio is established assuming that, under
both hypotheses, the received process is Gaussian. Let us
denote by X the vector obtained by pre�ltering and de-
composing the observation process under a set of orthonor-
mal functions. The decision about which hypothesis the
received signal belongs results from the Bayes test, that
consists in the comparison of the a-posteriori probabilities:

P (H1jX)

H1

>
<
H0

P (H0jX): (8)

For Gaussian signal and noise processes, the binary test (8)
becomes

L = X
>(C�1H0

�C
�1
H1

)X

H1

>
<
H0

ln

�
jCH1

j

jCH0
j

�
+ 2 ln

�
P (H0)

P (H1)

�
;

(9)
where P (Hi) is the, assumed known, a priori probability of
hypothesis i, and j � j stands for the matrix determinant.
All the previous considerations were developed assum-

ing that the nonlinearity parameter a is large, leading to
near-Gaussian pdf in both hypotheses. However, simula-
tion results show that the best processor (in the sense that
it minimizes the PE) based on the proposed scheme, corre-
sponds to a value of a that is close to the maximum standard
deviation of the signal process, where strictly Gaussianity
can not be assumed (although the signal information is not
strongly degraded). This situation results from a compro-
mise between two contradictory issues: in one hand, the
process Gaussianity increases with increasing a, giving rise
to a receiver close to the optimal; in the other hand, the
hypotheses separability strongly decreases for large values
of a.

3. SIMULATION RESULTS

For simulation purposes, we generate bandpass transients
s(i) = [p(i) � �(i)] � f(i) (� denotes the convolution) by
gating and �ltering independent Gaussian distributed se-
quences �(i) with zero mean and spectral height 49, where

p(i) = 16:4e�50(
i

207
�0:5)2=2

; for i 2 [0; 207]

is the gating and f(i) corresponds to the discretization, at
the sampling rate of 20=207s, of the continuous function
�lter

g(t) = IFT

�
rect(148; 223)(j!)2

(j! + 45� 180)2(j! + 45 + 180)2

�
:

IFT denotes the inverse Fourier transform, and rect(x; y)
is the rectangular function that takes the value one in the
interval [x;y] and zero elsewhere. The impulsive noise is
generated as independent S-�-S noise with characteristic
exponent � = 1:5, location parameter ` = 0 and dispersion

 = 1.
The WT decomposition is performed using Daubechies

D14 �lters [8], using only the coe�cients at scale 2, where
most of the energy of the transient signals lie.
Fig. 3 shows samples of both the generated signal, and

the signal plus noise, and highlights the impulsive and spiky



behavior of the S-�-S distribution. Fig. 4 presents the
curves of the Cherno� distances computed from the ap-
proximated expression of eq. (7), and obtained from the
correct computation of the covariance matrices under both
hypotheses. It is interesting to point out that, when the pa-
rameter a takes values larger than the maximum standard
deviation of the signal sequence s(i) (corresponding to the
case where assuming that z(i) is independent of s(i) is close
to reality), then the approximation curve tends to the true
one. In Fig. 5, we plot the receiver operating characteristics
for 3 di�erent values of a. The best case is close to the max-
imum obtained in �g. 4, thus showing, as expected, that
the maximization of the Cherno� bound gives a good ap-
proximation to the minimization of the probability of error.
Although the ROC shows a better performance for a = 3
when compared to the case where a = 9, the Cherno� dis-
tance in the latter case is larger. This contradictory result
is due to the fact that, for a = 3, the observation process
is far from being Gaussian distributed, and the Cherno�
distance no longer re
ects the class separability.
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4. CONCLUSIONS

The paper presents a detector of Gaussian bandpass tran-
sients under impulsive noise. The proposed scheme �rst
performs a nonlinear memoryless �ltering of the observation
process, in order to obtain a �nite-variance signal at its out-
put. A nonlinearity parameter is tuned, either by looking
at the receiver operating characteristic, or by an approxi-
mate method using the Cherno� distance, which requires a
smaller computational load. Then, a linear decomposition is
used, increasing the Gaussianity of the process under both
hypotheses. For this purpose, the wavelet transform was
chosen, due to its ability to reduce the complexity of band-
pass processes, as well as its on-line algorithmic capabilities.
At last, assuming Gaussianity, a quadratic likelihood ratio
is computed, and compared with a threshold. Monte Carlo
simulation results are presented using synthetic data.
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