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ABSTRACT

Matched-�eld methods are known to have a severe ambi-
guity problem. In low signal-to-noise-ratios (SNR's), where
the estimator cannot distinguish between the ambiguity
function peak near the true source location and ambigu-
ous ones, its mean square error deviates radically from
the Cramer-Rao lower bound (CRLB). In this paper, the
Barankin bound for the source localization problem in an
uncertain shallow water environment is derived. In partic-
ular, a method of selection of the test-points for evaluation
of the bound is presented. The bound is evaluated using a
\general mismatch" benchmark scenario. The results pre-
sented here predict the threshold SNR below which the per-
formance degrades dramatically. Channel uncertainties in
the benchmark scerario are shown to increase this threshold
SNR by as much as 3dB.

1. INTRODUCTION

This paper concerns source localization with a vertical line
array in a complex multipath ocean channel, as illustrated
in Fig. 1. Localization algorithms which use full wave
acoustic propagation models of complex multipath condi-
tions, known as matched-�eld methods, are e�ective at
higher signal-to-noise-ratios (SNR's) but su�er from severe
ambiguities at lower SNR's. Further, in the presence of un-

known channel parameters the ambiguity problem is even
more signi�cant.

A common tool for evaluating the achievable performance
of a parameter estimation algorithm is the Cramer Rao
Lower Bound (CRLB) [1], [3] and [6]. The use of the CRLB
is usually justi�ed by appealing to an asymptotic theorem
which asserts that the CRLB can be closely approached by
the maximum-likelihood estimator under asymptotic con-
ditions: i.e. \su�ciently large" (SNR) and/or observation
time. Actually, in low SNRs where the estimator is prone
to ambiguous estimates, the mean square error of unbiased
estimators deviates radically from the CRLB as the SNR
is reduced, exhibiting a threshold phenomenon [6]. Thus
below the threshold, the CRLB is no longer useful. The
threshold SNR for a given processor is an important mea-
sure of its performance. Moreover, it is most important to
be able to establish the non-asymptotic optimality of an
algorithm. In this paper,we use the Barankin bound [2] to
predict the achievable performance of any unbiased localiza-
tion algorithm in non-asymptotic conditions. In particular,

an algorithm for which the threshold SNR is similar to that
of the Barankin bound is presented. In [8] the Barankin
bound is studied for di�erent scenarios and it is compared
to the non-asymptotic performance of some well known lo-
calization algorithms.
This paper is organized as follows: In section 2, the

problem is de�ned and formulated. Section 3 presents the
Barankin bound for this problem. Section 4 describes tech-
niques for reducing the amount of computations required
to calculate the bound. Section 5 presents the results using
computer simulations

2. PROBLEM FORMULATION

Consider a point source at depth zo and range ro which ra-
diates a monochromatic signal at angular frequency ! in a
time invariant shallow-water waveguide. The acoustic �eld
is sampled by a vertical array of N sensors. The depth of
the ith sensor from the upper surface is denoted by zi. The
sensor locations are assumed to be known. Fig. 1 depicts
the environmental con�guration and the source-array geom-
etry. The environmental scenario is one of the more complex
benchmark cases used in the May 1993 NRL Workshop on
Acoustic Models in Signal Processing [5].
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Figure 1. The NRL workshop \genlmis" scenario

con�guration

Using a normal mode model, the complex amplitude of
the received signal at sensor i can be expressed by (see e.g.
[9]):

yi = b

MX
m=1

�m(zi)�m(zo)
ej�mro

p
�mro

+ni ; i = 1; � � � ;N ; (1)



where �m(�) and �m are the modal eigenfunction and hor-
izontal wavenumber of the mth mode, respectively. M is
the number of the propagating modes in the channel, and
ni stands for the additive noise complex amplitude at the
ith sensor. The received noise at the sensors is assumed
to be zero-mean, Gaussian, with known covariance matrix,
Rn.
The modal eigenfunctions, �m(zi), and horizontal

wavenumbers, �m, depend on environmental parameters
which describe the bathymetry, geo-acoustic properties of
the bottom, and sound-speed in the water column. In prac-
tice, these parameters are not precisely known. The uncer-
tain environmental parameters considered in this paper, are
shown in Fig. 1. The objective here is to estimate the source
location parameters (ro; zo) from the measurement vector

y
4

= [y1; � � � ; yN ]T , when the complex signal amplitude b is
unknown, and the environment is uncertain. The vector
of unknown parameters, � includes the source range and
depth, the real and imaginary parts of the signal complex
amplitude, and the vector of environmental parameters.

3. THE BARANKIN BOUND

The Barankin bound for mean square error of any unbiased
estimator of � from the measurement vector y is given by
[2]:

covf�̂g � T
�
B� 11T

�
�1
T
T (2)

where �̂ is the unbiased estimate of �. The matrix T is
de�ned as

T
4

= [(�1 ��) (�2 ��) � � � (�K ��)] : (3)

To maximize the bound, the values of �k should be cho-
sen near values of � corresponding to location ambiguities.
They can be pre-determined, or they can be found by max-
imizing the right hand side of (2). The elements of the
matrix B are given by

Bij(�)
4

= E fL(y;�i;�)L(y;�j ;�)g ; i; j = 1; � � � ;K ;

(4)
where L(y;�i;�) is the likelihood ratio:

L(y;�i;�)
4

=
f(yj�i)

f(yj�)
: (5)

For our problem, consider the following data model:

y = a(�) + n ; (6)

where a(�) is a known vector function representing the chan-
nel spatial transfer function, and n is an additive, zero-
mean, Gaussian noise with spatial covariance matrix Rn.
Therefore, the conditional probability distribution of y,
given the parameter vector � is:

f(yj�i) =
1

det(�Rn)
exp

�
�(y� a(�))HR�1n (y� a(�))

�
:

(7)
Substitution of (7) into (5) for evaluation of (4) yields:

Bij(�) =
1

det(�Rn)

Z
1

�1

exp (Cij(�))dy ; (8)

where Cij(�) is de�ned as:

Cij(�) = (y� a(�i))
HR�1n (y� a(�i))

+(y� a(�j))
HR�1n (y� a(�j))

�(y � a(�))HR�1n (y� a(�)) : (9)

Plugging (9) into (8), and after a few lines of algebra, one
obtains:

Bij(�) = Gexp
�
2Re

�
a
H (�i)R

�1
n a(�j)� a

H(�)R�1n a(�i)

�aH(�)R�1n a(�j) + a
H(�)R�1n a(�)

�	
(10)

where G is de�ned by

G
4

= 1

det(�Rn)R
1

�1

exp
�
�(y � a(�i)� a(�j) + a(�))HR�1n

(y � a(�i)� a(�j) + a(�))] dy :

(11)
G is an integral from �1 to 1 of a Gaussian probabil-
ity density function with covariance matrix Rn and mean
a(�i) + a(�j)� a(�). Therefore G = 1, and Bij(�) from
(10) becomes:

Bij(�) = exp
�
(a(�) � a(�i)])

H
R
�1
n (a(�)� a(�j))

�
:

(12)
Now the bound can be evaluated by using expression (12)
into (2). The key point for achieving a tight bound is proper
selection of the test-points. In particular, in an ocean
environment the number of unknown parameters is large.
Therefore, calculation of inverse of the matrix B(�) eval-
uated according to a multidimensional grid of test points
is required. In the next section, reduction in the number
of computations and selection of the test-points will be dis-
cussed.

4. EVALUATION OF THE BOUND FOR

SHALLOWWATER SOURCE

LOCALIZATION PROBLEM

Environmental uncertainties cause errors in the modal hor-
izontal wavenumber and eigenfunctions. In a shallow water
waveguide, where the source range is much larger than the
channel depth, the e�ect of errors in the modal horizontal
wavenumbers is very signi�cant, since the modal phases are
the product of the horizontal wavenumbers and the source
range, resulting in large modal phase perturbations. Here,
we assume that the environmental uncertainties cause er-
rors only in these modal phases. In other words, we repre-
sent the environmental uncertainties by uncertainties in the
modal horizontal wavenumbers (see [7] for validity of this
assumption).
In order to further reduce the number of unknown param-

eters, the mean and covariance matrix of the modal hori-
zontal wavenumber vector, �� and R�, are estimated using
a Monte-Carlo method:

�� =
1

L

LX
l=1

�(l) ; (13)

R̂� =
1

L

LX
l=1

�(l)�(l)H ; (14)



where f�(l)gLl=1 are L realizations of modal horizontal
wavenumber vectors computed assuming a uniform distri-
bution of environmental parameters over the intervals in-
dicated in Fig. 1. For calculation of these wavenumbers,
KRAKEN [4], a normal mode propagation model program,
was used to generate a database containing scenarios with
independent perturbations of the environmental uncertain
parameters.

The horizontal wavenumbers can be e�ciently expressed
by:

� = ��+Ug : (15)

where U is the matrix of eigenvectors of R̂�, and the diag-
onal matrix �g is the covariance of the vector g:

R̂� = U�gU
H
: (16)

Now, the random environmental parameters given by the
vector g cause wavenumber vector perturbations described
by the column space of R̂�. Furthermore, the �rst element
of g associated with the highest eigenvalue of R̂� captures
the largest component of the environmental uncertainty. In
the following, all the elements of g, except the �rst one, are
assumed to be known. By this assumption the bound will
be lower than assuming all the elements in g are unknown,
but it will enable us to reduce the amount of computations
for evaluation of the bound. Thus the modal horizontal
wavenumbers can be approximated by

�m = ��m + Um1g1 m = 1; � � � ;M: (17)

The importance of the last step is that the environmen-
tal uncertainties are expressed by a single parameter, g1.
However, for the single source case, there are �ve unknown
parameters: source range and depth, the environmental
parameter and the real and imaginary parts of the com-
plex signal amplitude. Taking a grid in each dimension of
this parameter space would result in a huge number of test
points, precluding alculation of the bound which involves a
matrix inversion whose size is determined by the number of
the test-points. In order to avoid inversion of a matrix with
such a large size, the most test-points making the great-
est contribution will be identi�ed. The most contributing
test-points are the K lowest values of the weighted norm
ka(�)�a(�j )k2R�1n

for j = 1; � � � ; J where J is the number

of candidate test-points. The �eld is evaluated for the J

candidate test-points on the grid of the parameters, ro, zo
and g1. Because of the linear dependence of the �eld on
the signal amplitude, b, one is able to choose test-points
on b which minimize the weighted norm of the di�erence
between the true value of the �eld and the test-points in
order to increase the bound. The test-points which have
been declared as the most contributing test-points are se-
lected in order to construct the matrices B and T. By this
method, evaluation of the �eld is required only on a three
dimensional parameter space. In order to avoid inversion of
a large matrix, among these candidate test points only the
most contributing ones are selected for calculation of the
bound.

5. SIMULATION RESULTS

In this section, numerical evaluation of the Barankin bound
for depth and range estimation for the channel of Fig. 1. is
presented. Two scenarios are considered: (1) the \genlmis"
scenario presented at the 1993 NRL workshop (Fig. 1), and
(2) unknown channel depth scenario with known signal am-
plitude. In the �rst scenario the environmental uncertain-
ties are assumed to a�ect the modal horizontal wavenum-
bers only while in the second scenario the uncertainty in the
channel depth a�ect both the modal horizontal wavenum-
bers and the modal eigenfunctions. Source localization
performance in these scenarios is compared to the case of
known environment. For evaluating the bounds many test
points on a grid in the parameter space were used. We
consider a single source which radiates a monochromatic
signal at 250Hz, located at depth z0 = 50m in a channel
of depth 102.5m. The acoustic �eld is sampled by a verti-
cal array of 20 sensors, equally spaced 5m apart, located at
range r0 = 7:5km from the source. In all cases, K = 200
contributing test-points were selected to construct the ma-
trices B and T.
In the �rst scenario, the modi�ed model of (17) was con-

sidered while in the second scenario in which only the chan-
nel depth is unknown, the exact propagation model was con-
sidered. The bounds on range and depth estimation error
as a function of SNR are shown in Figs. 2,3 for the �rst sce-
nario and in Figs. 4,5 for the second. For comparison, the
CRLB is also plotted in these �gures. The threshold phe-
nomenon is clearly identi�ed. Note, that the threshold SNR
of the range estimation is more sensitive to the knowledge
of the channel than that of the depth estimation indicating
that the uncertainties in the modal horizontal wavenum-
ber a�ect primarily range estimation error. Figs. 2 and
4 show that the uncertainties cause the threshold SNR for
range estimation to increase by � 3dB. Further Barankin
bound results for di�erent scenarios, including study of the
threshold channel uncertainty level, rather than threshold
SNR are presented in [8].
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Figure 2. The bounds on range estimation error,

\genlmis" scenario con�guration
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Figure 3. The bounds on depth estimation error,

\genlmis" scenario con�guration
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Figure 4. The bounds on range estimation error,

unknown channel depth
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