JOINT DIRECTION-OF-ARRIVAL AND ARRAY SHAPE TRACKING FOR
MULTIPLE MOVING TARGETS

Jason Goldberg

Department of Electrical Engineering—Systems
Tel Aviv University, Tel Aviv 69978, Israel
jason@eng.tau.ac.il

ABSTRACT

An algorithm for the joint tracking of source DOA’s and
sensor positions is presented to address the problem of
DOA tracking in the presence sensor motion. Initial max-
imum likelihood estimates of source DOA’s and sensor po-
sitions are refined by Kalman filtering. Spatio-temporally
correlated array movement is considered. Source angle dy-
namics are used to achieve correct data association. The
new technique is capable of performing well for the difficult
cases of sources that cross in angle, fully coherent sources,
as well as sources of identical or vastly different (possi-
bly time-varying) power. Computer simulations show that
the approach is robust in the presence of array motion
modeling uncertainty and effectively reduces dependence
on expensive and possibly unreliable hardware.

1. INTRODUCTION

The issue of tracking the directions-of-arrival (DOA’s) of
moving sources or targets has begun to receive increased
attention, e.g., [1]. The “DOA tracking problem” consists
of estimating the DOA’s of moving sources in such a way
that each of the DOA estimates is correctly associated with
a particular source from one increment of time to the next.
In the specific case of passive towed arrays for sonar, the
accuracy of source tracking algorithms can be greatly lim-
ited by sensor location uncertainty [2]. This uncertainty
may be due to the motion of the towing vessel, ocean con-
ditions, as well as the physical properties of the array.

To deal with this problem, two general approaches to
array shape estimation have emerged over the past several
years. The first is based on the application of “interpola-
tion type” algorithms applied to the outputs of depth and
orientation sensors distributed along the array, e.g., [3].
Also, specifically for array shape tracking, [4], [5] makes
use of the Paidoussis equation as a dynamic wave prop-
agation model for a thin flexible underwater line array
subject to motion induced at the tow point. Secondly, to
avoid the excessive cost and practical difficulties of using
a high number of depth sensors and compasses, several so-
called data-driven “self-calibration” techniques have been
proposed e.g., [6]. In the absence of other modeling er-
rors, data driven techniques offer the possibility of accu-
racy limited only by the number of snapshots available [2].
However, such methods treat the sensor displacements as
spatio-temporally uncorrelated random variables of known
statistics or as deterministic unknowns.
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This paper seeks to combine the advantages of the two
basic approaches described above in order to solve the
problem of jointly tracking the DOA’s of multiple mov-
ing targets and the array shape. The main contribution
of the paper is the combination of data driven maximum
likelihood estimates (MLE’s) followed by Kalman filter-
ing which allows one to gain robustness in the presence
of sensor motion modeling uncertainties while effectively
minimizing the tracker’s dependence on potentially costly
and unreliable depth sensor and/or compass hardware.

2. PROBLEM FORMULATION
2.1. Preliminary Notation
First, consider N spatially stationary far-field point sources
impinging on a stationary array of M passive sensors in the
presence of additive white Gaussian noise (AWGN) over an
observation interval of duration 75,. The output of the mth
sensor can be written as [7]:

Zn(t) =D sult—Tmn) +em(t),  tE[0,T,) (1)

where {s,(t)}n=, and {en (t)}¥_, denote the signal and
sensor noise waveforms, respectively, and {7mn} are the
propagation delays from the nth source to the mth sensor.
Divide the temporal interval into B sub-intervals. The
frequency domain snapshot vector at frequency w and bth
temporal sub-interval is written as:

z(b,w) = A (w)s (byw) +e(byw), be {1,---,B} (2)

where A (w) is the M x N steering matrix at frequency
w, and s (b,w) and e (b,w) are, respectively, the N and M
dimensional signal and noise Fourier coefficient vectors at
frequency w and sub-interval b.
Restricting attention to far-field, point sources at fre-
quency w and co-planar with the array we can write:
[A @), = e 7m0, (3)

mn

Tmn (On) = —% (T €080y, + Yy sinbs,) (4)

where {(zm,ym)}2 =, denote the positions in the zy plane
of the M sensors. {9n}§:1 denote the DOA’s of the N
sources. The notation []m» denotes the mnth element of
a matrix.

2.2. DOA and Array Shape Dynamical Model
Now, consider the spatially nonstationary case of source
DOA’s and array shape that change with time. Begin by



assuming that each of the N DOA trajectories as a function
of time is described by the following discrete time state
space equation with update interval T':

xp, (k+1) = Foxg, (k) + wg, (k), (5)

x0, (K) = 16 (K) 6,(k))", Fo = [3 f]

where the angle update time index k corresponds to time
t = kT. 6,(k) and 6,(k) respectively denote the angu-
lar position and speed of the nth source at time k. The
model noise, wy, (k), is assumed zero mean, Gaussian and
of covariance Qg, (k). (5) describes a so-called “constant
velocity” model for the DOA trajectories subject to ran-
dom perturbations. This model is accurate if the source
motion is sufficiently slow relative to the parameter update
interval, T

Next, consider a model for the dynamic behavior of the
array shape. For simplicity, consider the uniform linear
array (ULA) with unknown sensor movement restricted to
the y-axis, (i.e., the z-coordinates of each of the sensor lo-
cations is assumed known). A sensor movement model in-
corporating spatially as well as temporally correlated type
motion is that of the Paidoussis equation e.g., [4].

A discretized state space formulation of the simplified
“water pulley” version of the Paidoussis equation in addi-
tion to depth and/or compass sensor measurements were
used as the foundation of a Kalman based array shape
tracker in [4]. The model is also used in the present work.
As in other data driven techniques, it will be assumed in
the model that the positions of sensors one and two are
known.' The dynamic model will then applied to describe
the motion for sensors three to M:

Xy(k+1) = Fyxy (k) + wy (k) + u(k), (6)

xy (k) = [ys(k), -, ym (R)]",
u(k) = [py2(k - 1)’0""70]T)
Qy (k) = Elwy(k)wy (k)]
00 0
10
Fy=(1-p)I+pL, L=|01 0
b ' 10

where u(k) is a driving term which is assumed known in
this work. p € [0, 1] is a parameter, which, for water pulley
motion, is the ratio of the distance traveled by the distur-
bance along the array in 7" seconds to the spatial discretiza-
tion interval (corresponding to the distance between adja-
cent sensors in our case). (6) models the position of each
sensor m € {3, -+, M} as a weighted sum of its position at
the previous time instant and that of the previous adjacent
sensor at the previous time instant plus zero mean additive
white Gaussian noise (AWGN) of specified variance.

As explained in [4], if T' is chosen such that p = 1, then
Fy has been found to be well approximated by aL, where

L Again, in practice, estimates of these positions will be ob-
tained from some type of additional depth sensor and/or com-
pass hardware.

a is a damping factor near unity. Also, it is seen that for
p = 0, the sensor motion is independent from one sensor
to the next. In this case (6) corresponds to a first order
auto-regressive (AR) model to describe the displacement
of each sensor from the array axis as a function of time.
In this case, the position of each sensor is modeled as its
position at the previous time instant plus AWGN.

2.3. DOA/Array Shape Tracking Problem

As in [1] it will be assumed that 7o is chosen to be small
enough such that the parameters of interest remain approx-
imately constant over the update interval: &£(k) = &(t), t €
[T, (k 4+ 1)T,). Thus, the correlation matrix R = E[zz"]
remains roughly constant over the update interval and can
be estimated by: R(k) = & Zszl z(b)zi (b) where the
estimated correlation matrix and the snapshot vectors are
shown with the track update index, k.

Now, the problem addressed in this paper is how to use
the received data at frequency w and the dynamical mod-
els introduced above to track the source DOA’s and array
shape over time such that correct source-to-angle associa-
tion is maintained. That is, for each k € Zy, {0, (k)}o_1,
estimates of the source DOA’s are to be formed so that
6. (k) always corresponds to an estimate of the DOA of
the nth source in particular.

3. MAXIMUM LIKELIHOOD ESTIMATION
This section describes how the deterministic likelihood
function for the problem of joint DOA /array shape esti-
mation is used to provide the initial parameter estimates.
If the source waveforms and the sensor positions are mod-
eled as deterministic unknowns, it is not difficult to show
that their deterministic MLE’s are given as [6]:

£y = arg Irgn{L(E)} (7)

L(e) = & (PA(OR) ®)
Pi(¢) = I- AA*, A%* = (A7A) "A"

52[917"')€N7y3""’yM]T (9)

where the parameter vector will contain the N source
DOA’s followed by M —2 y-axis sensor displacements. tr(-)
denotes the matrix trace operation, and P (§) and A*
are, respectively, the orthogonal complement projector and
the pseudoinverse associated with the steering matrix, A.
To simplify notation, the dependence on the angle update
time index k and the parameter vector, &, has been and
will be dropped when possible. Also note that the number
of sources, N is assumed known and constant.

In the context of tracking, MLE’s of the parameters
can be obtained by iteratively minimizing the likelihood
cost function of (8). In particular, given &,, a parameter
vector known to be “close” to the MLE parameter vector,
the MLE’s can be obtained by an iterative Gauss-Newton
procedure as in [8]. In practice, £,, can be obtained read-
ily from the parameter estimate of the previous iteration
or some function thereof. (The details are provided in the
next section.) Since this will often be a good initial guess
at the maximum likelihood parameter vector, E ML, & low
number of Ga;\uss-Newton iterations will normally be re-
quired. It is &,;; that will be applied to the Kalman fil-
tering procedure described in the next section.



4. TRACKING ALGORITHM
The measurement equation corresponding to the dynamic
model (5) describing the DOA trajectory of the nth source
at time k is:

96, (k) = hg xg, (k) + vg, (k), hy =[10]" (10)
Since the measurement is taken as the MLE for the DOA of
the nth source, go, (k) = [, (K)]n = 0MmL,,, as computed
in (7), hi xe, (k) and vy, (k) are respectively identified as
the true DOA, 6,(k), and the MLE error. As in [1], if
the measurement noises (i.e., estimation errors) of the N
DOA estimates are assumed to be zero mean Gaussian and
mutually uncorrelated, the problem can be decoupled into
a bank of scalar Kalman filters (one for each source) with
significant savings in computation.

More specifically the Kalman prediction is formed as:

%, (k|k — 1) = Fo%e,, (k — 1|k — 1), (11)

where %o, (k|k—1) and %Xg,, (k—1|k—1) denote, respectively,
the predicted state vector for the nth source DOA at time k
and the filtered state vector at time k—1. Next, the MLE’s
of all the parameters are f(zfmed by via a Gauss-Newton
iteration initialized at &, = &(k|k—1), the parameter vector
obtained from the Kalman predictions, and is used such
that the state update equation can be written as:

%o, (k|k) = %o, (klk — 1) + ko, (k) (12)
NOr, (k) = 6n (K|l — 1)]

where %o, (k|k) and kg, (k) are, respectively, the filtered
state vector and the Kalman gain vector for the nth source
DOA at time k. It is noted that the MLE of the DOA
of the nth source minus the predicted angle serves as the
innovation sequence of the associated Kalman filter. The
final angle estimate for the nth source at time k is given
by the first element of %4, (k|k).

The Kalman gain is updated by the following set of
equations:

Yo, (k|k — 1)hg
hISg, (k|k — 1)hg + 19, (k)
o, (k|k —1)

—kg, (k)hg 2, (k|k — 1)
o, (k+ 1|k) = FoXy, (k|k)Fs + Qo, (k).  (13-c)

ko, (k) = (13-a)

3, (k|k)

(13-b)

ry,, (k), is effectively a gauge of the quality of the MLE for
the nth source DOA produced by (7) at time k. In practice,
control of rg, (k) has been observed to be important for
proper performance of the tracker—especially when sources
cross in angle. It is reasonable and convenient to set the
measurement noise variance as the nth element on the di-
agonal of the Cramer-Rao Bound (CRB) for this problem
(assuming Gaussian signals):

79, (k) = CRBn, (14)
CRB =J!

[J]mn

1 OR 18—R> . (15)

It should be emphasized that the CRB for the DOA’s in-
creases dramatically for sources that are closely spaced
in angle relative to the resolution of the array. In such
cases, the corresponding increase in rg, (k) has the effect
of greatly decreasing the Kalman gains of the associated
Kalman filters. This is intuitively desirable since the
Kalman filters tracking the crossing sources should depend
much more on the constant velocity model via (11) than
the (extremely noisy) measurements produced by (7).

The Kalman filtering equations for the discrete spatio-
temporally correlated sensor motion model (6) are anal-
ogous and therefore not shown. It is worth noting that
since, unlike the measurement noise variance for the source
DOA'’s (which can easily fluctuate several order of magni-
tude), that of the y-axis sensor displacements remains rel-
atively constant. Thus, additional savings in computation
can be obtained by setting the sensor displacement mea-
surement noises to reasonable constant values, {ry,, }27_;,
and calculating the Kalman gain update equations in ad-
vance off-line.

5. RESULTS

Consider the case of N = 3 unit power (0dB) narrow-
band sources centered at f = 100H z impinging on a towed
ULA of M = 20 sensors with nominal half-wavelength
(A/2 = 7.5m) inter-element spacing along the z-axis. The
array length is (M — 1)A/2 = 142.5m. The sources have
initial DOA’s of #:(0) = —20°, 62(0) = —10°, and 63(0) =
25°. Source three is a fully coherent multipath reflection of
source two. Additive sensor noise of variance —20dB is also
present. Six minutes of the source trajectories are shown in
Fig. 1. Sinusoidal motion of amplitude 20m and frequency
2mH z at the tow point propagates down the array accord-
ing to the water pulley solution of the Paidoussis equation.
The disturbance is assumed to propagate undamped along
the array (o = 1) at the tow speed, 2.5m/sec. The tracker
is updated once every three seconds (i.e., T' = 3) implying
that p = 1.

If the array shape tracker of [4], [5] uses a water pul-
ley sensor motion model which nearly perfectly describes
the actual sensor motion, highly accurate sensor positions
estimates can be obtained and then used in a DOA only
tracker. However, in practice, modeling errors may arise
due to ocean induced array motion or the discretization of
the Paidoussis equation [4] as well as imprecisely modeled
damping along the array, inaccuracies in the assumed tow
speed or the assumed speed with which the tow point in-
duced motion propagates along the array. Assume that the
array is outfitted with depth sensors at hydrophone sensor
positions m € {1,2,11} which yield estimates of the array
position at these points which are unbiased and of vari-
ance, 107*m?. Let us consider the same scenario again
with assumed tow speed 2.5m/sec and assumed damping
a =1 but with true tow speed 2.48m/sec and true damp-
ing 0.99. Fig. 2 indicates that these small errors (each one
percent of the true values) produce significant MSE which
propagates along the array. Moreover, applying these sen-
sor position estimates to the DOA only tracker has been
seen to cause this tracker to fail completely.

Next, the joint DOA-array shape tracker performance
is considered. For the same scenario lower MSE in sensor
position at each sensor is indicated in Fig. 3. The bias



and variance of the source DOA’s as a function of time
are shown in Figs. 4 and 5, respectively. The graphs are
based on averaging two hundred independent realizations.
B = 20 frequency domain snapshots at f = 100Hz are
available per tracker iteration. As opposed to the decou-
pled trackers, here successful joint-DOA array shape track-
ing was obtained in the presence of array motion modeling
errors and without relying on the depth sensor at m = 11.
Transient effects are observed approximately until ¢ = 50
to t = 100sec (i.e., for about 17 to 34 tracker iterations).
The slight bias seen when sources cross is believed to be
due the Kalman filters’ almost exclusive reliance on the
constant angular velocity model approzimation during and
near source crossings. Simulations (not shown) were also
conducted for high noise and widely disparate source power
scenarios. It was found that, as expected, performance
worsened as SNR decreased.
6. CONCLUSION

A new joint DOA /array shape tracking algorithm for mul-
tiple moving targets in the presence of sensor motion has
been presented. The technique applies the output of the
MLE to a bank of post-processing Kalman filters effec-
tively reducing the tracker’s dependence on depth sensors
and compasses and providing robust performance in the
presence of sensor motion modeling errors. Extensions to
near-field and/or wideband sources are straightforward.
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Figure 2: Decoupled Tracker—Sensor position MSE (m?).
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Figure 3: Joint Tracker-Sensor position MSE (m?).
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Figure 4: Joint Tracker-DOA bias (degrees).
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Figure 5: Joint Tracker-DOA variance (degrees sqrd).



