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ABSTRACT

A key element for successful tracking is knowing from
which target each measurement originates. These mea-
surement-to-target associations are generally unavail-
able, and the tracking problem becomes one of esti-
mating both the assignments and the target states.
We present the Probabilistic Least Squares Track-
ing (msPLST) algorithm for estimating the measure-
ment-to-target assignments and the track trajectories
of multiple targets, using measurements from multiple
sensors. This is a di�erent approach to that used in
Probabilistic Multi-Hypothesis Tracking (PMHT), al-
though both algorithms employ the concept of an ex-
tended observer containing both the target states and
the measurement-to-target assignments. A comparison
of both algorithms is made, and their performance is
evaluated using simulated data.

1. INTRODUCTION

The tracking performance of a systemmay be enhanced
by combiningmeasurements from di�erent sensors such
as radar and optical. A variable update rate Kalman
�lter, with a common state space model of the system
dynamics, is a particularly useful tool for fusing asyn-
chronous sensor outputs. However, the gains achieved

by fusing data can be severely degraded in the presence
of noise and other interfering targets. This is evident
from our previous work in fusing radar and optical mea-
surements [1], where other interfering targets readily
seduced the optical tracking gate.

One way to overcome this problem is to run two
trackers and associate the measurements with each tar-
get. This association of measurements to targets is
referred to as the data association problem, and is par-
ticularly important in multi-sensor, multi-target envi-
ronments where the likelihood of incorrect assignments
increases with the number of sensors and targets.

Probabilistic Multi-Hypothesis Tracking (PMHT)
has recently been introduced as a promising technique
for associating multiple measurements with multiple
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Figure 1. Fitting points to straight lines.

targets [2, 3]. In this algorithm, the observer is ex-
tended to include the unknown measurement-to-target
assignments. Soft or probabilistic assignments are then
estimated in conjunction with the target states using
maximumlikelihood techniques. PMHT is intended for
tracking multiple targets using measurements from a
single sensor. By generalising PMHT for a multi-sensor
environment, we have developed a multi-sensor PMHT
(msPMHT) algorithm for tracking multiple targets us-
ing measurements from multiple dissimilar sensors [4].

2. LEAST SQUARES FOR MIXED

MODELS

Consider the tracking problem in �gure 1, where the

sets of noisy measurements, Z
(1)

T = (z
(1)
t1
; : : : ; z

(1)
tT

)

and Z
(2)

T = (z
(2)
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; : : : ; z

(2)
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), are to be �tted to the

unknown straight line target trajectories, X
(1)
T and

X
(2)

T , respectively. Assuming that Z
(1)

T contains the

measurements associated with X
(1)

T , and Z
(2)

T contains

those associated with X
(2)

T (ie the measurement-to-tar-
get assignments are known), the unknown parameters
(m1; c1;m2; c2) of the two straight line trajectories are
determined by minimising the cost functionX
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where �
(m;r)
ti

is the usual least squares error between

the measurement z
(r)
ti

and the trajectory X
(m)
T . If the

noise on the measurements varies, for example if the
measurements originate from di�erent sensors, each er-
ror term in the sum may be weighted by the inverse of
its noise. This gives a weighted least squares solution.

In practice, the measurement-to-target assignments

may not be known, ie Z
(1)

T and Z
(2)

T each contain
measurements associated with both trajectories. The
tracking problem then becomes one of estimating both
the target trajectories and the measurement-to-target
assignments from the observed measurements. The ob-
server therefore contains both the target states and the
assignments. As shown in �gure 1, it is not always ob-
vious which target each measurement belongs to, par-
ticularly if the targets are close or crossing. For the
above problem, a set of unknown assignment weights,

�
(m;r)
ti

, are introduced, one for each possible measure-
ment to target assignment, representing a (normalised)
con�dence that the rth measurement at time ti is asso-
ciated with the target m. A weight of one implies that
the measurement de�nitely originated from the target,
and zero implies that it didn't. It is these weights, or
soft assignments, that are estimated.

For the above simpli�ed tracking problem, the least
squares criterion can be generalised to

min

MX
m=1

RX
r=1

TX
i=1

�
(m;r)2

ti
�
(m;r)2

ti

with respect to both the unknown �
(m;r)
ti

's and the tra-
jectory parameters (m1; c1;m2; c2). The requirement

that
P

m �
(m;r)
ti

= 1 for every data point is imposed,
ensuring all measurements are assigned to exactly one
target trajectory.

During each iteration of the algorithm, new target
state and assignment weight estimates are determined
from the above criterion, using the estimates from the
previous iteration. These estimates gradually converge
to their true values.

In the following, we present a generalised approach
to this problem.

3. MULTI-SENSOR PROBABILISTIC

LEAST SQUARES TRACKING

(msPLST)

Consider a system of S > 1 sensors (S > 2 for multi-
sensor tracking) monitoring M > 2 targets. Assume
that at each time, t1; : : : ; tT , all S sensors produce a
single measurement, each of which must be assigned to
a target. This does not restrict the problem, as target
models can be de�ned for noise, false alarms, etc.

Assume that an initial state estimate at time t0,

�x
(m)
t0

, and its covariance, ��
(m)
t0

, is available for each tar-
get modelm. Then each unknown target trajectory can
be de�ned by the stochastic process model

x
(m)
ti

= F
(m)
ti�1

x
(m)
ti�1

+w
(m)
ti�1

i = 1; : : : ; T:

For model m 2 f1; : : : ;Mg, x
(m)
ti

is the state at time ti,

F
(m)
ti�1

is the state transition matrix describing the target

dynamics from time ti�1 to ti, andw
(m)
ti�1

is additive zero

mean process noise with known covariance Q
(m)
ti�1

.

Each measurement in the set ZT = (Z
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T ; : : : ; Z
(R)

T ),

Z
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; : : : ; z

(r)
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), can be represented by one of the
measurement models in the set

z
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2 fH
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+ v
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m = 1; : : : ;Mg:

z
(r)
ti

is the measurement originating from the rth sen-

sor during the scan at time ti. H
(m;r)
ti

is the measure-
ment matrix that maps the state space of target m onto

the measurement z
(r)
ti

, and v
(m;r)
ti

is additive zero mean

measurement noise with known covariance R
(m;r)
ti

.
The process and measurement noises are assumed

to be uncorrelated, and independent between models.
The assignment weights are assumed to be independent
between scans.
This leads to the cost function

J =
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It contains the standard least squares error terms (2),
representing the di�erences between the actual mea-
surements and those that would have resulted in the
absence of noise. It also includes the errors between
the actual target states and their initial estimates (3),
and the errors between the actual target states and
those predicted by the target process model (4).
Minimising J with respect to the unknown assign-

ment weights, subject to
PM

m=1 �
(m;r)
ti

= 1, yields
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for m = 1; : : : ;M and r = 1; : : : ; R.

Minimising the cost function with respect to the tar-
get states produces M independent sets of T +1 simul-
taneous equations. The state estimates at times t0 to
tT for a particular target model are obtained by solving
the appropriate set of equations. These equations can
be solved using M �xed interval Kalman smoothers,
one for each target model. For this, we de�ne the M
composite measurement models

~z
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ti

= ~H
(m)
ti

x
(m)
ti

+ ~v
(m)
ti

m = 1; : : : ;M:

For target m, ~H
(m)
ti

is the composite measurement ma-
trix that maps the state vector onto each possible mea-
surement type (ie bearing, range, range rate, etc) and

~v
(m)
ti

is the composite zero mean measurement noise

with covariance ~R
(m)
ti

. The composite measurement
and covariance for each target model are de�ned as
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where H
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These composite values are substituted for H, R and z
in the the Rauch-Tung-Striebel form of the �xed inter-
val Kalman smoother equations [5].

Equation (5) and the Kalman smoother are used re-
cursively to estimate the measurement-to-target assign-
ments and target states.

The algorithm is easily extended for the case of
asynchronous measurements by allowing the number
of measurements to vary with time. The measurement
number, r, now takes the values 1; : : : ; nti (instead of
1; : : : ; R), where nti denotes the number of measure-
ments occuring at time ti.

4. COMPARISON WITH msPMHT

The likelihood function for the msPMHT algorithm [6]
for the linear-Gaussian case is given as

Q = �
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where 0 denotes the value from the previous iteration of
the algorithm. The �rst term constitutes the negated
msPLST cost function (1), with the measurement as-

signment probability, !
(m;r)0

ti
, replacing the squared

measurement weight, �
(m;r)2

ti
. The msPMHT estimates

the measurement probabilities �
(m)
ti

, calculating the as-
signment probabilities from these estimates. The mea-

surement probabilities, �
(m)
ti

, represent the fraction of
measurements assigned to each target model, and pro-
duce the �nal summation in the likelihood function.
The target states in both algorithms are estimated

with a �xed interval Kalman smoother. The com-
posite measurement and covariance expressions for the
msPMHT [6] are equivalent to the expressions in (6),

with �
(m;r)2

ti
replaced by !

(m;r)0

ti
.

The msPMHT likelihood function is maximised sub-
ject to the constraint that all measurement probabil-
ities at any time must sum to unity. The msPLST
is constrained by the more stringent requirement that
the measurement weights associated with each mea-
surement must sum to unity.
To compare performance, we consider a system of

two sensors tracking a single constant velocity target.
The two target models in the tracker are both initialised
using this target. After 15 seconds, a second target
with a lower velocity seduces the second sensor, the
�rst continuing to track the original target. The �rst
sensor has a measurement noise covariance ten times
that of the second. The target tracks obtained from the
msPMHT algorithm are shown in �g. 2. The msPLST
tracks about the point where the second target is in-
troduced are shown in the inset for comparison.
It can be seen that both algorithms maintain track

on both targets. During the �rst 15 seconds, mea-
surements from both sensors are fused, and during the
later stages, each target is assigned measurements from
only one sensor. The tracking performance (track er-
ror covariance) is similar for both algorithms under
these conditions. However, the introduction of the
second target causes the msPMHT tracks to deviate
signi�cantly from the true target position for several
hundred samples. The msPLST assignment weights
(5) are more sensitive to instantaneous changes in er-
ror between the measurements and predicted target
position than the msPMHT assignment probabilities,
which from [4] are given by
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Figure 2. msPMHT tracks.

Target 1

Target 2

msPLST

The e�ect of this on the assignment variables for mea-

surements Z
(1)

T and targetm is shown in �gure 3. While
the targets remain su�ciently close, this lower sensi-
tivity, and the tendency of the algorithm to favour the

measurements with lower noise (Z
(2)
T ), causes a fall in

�
(1)
ti

as the targets separate. This produces the drop in
assignment probability shown in �gure 3.

In both algorithms, initialisation is extremely impor-
tant. This is because neither guarantees convergence
to a global maximum or minimum; the msPMHT con-
verging to the nearest local maximumand the msPLST
converging to the nearest local minimum. Therefore
initialisation is critical to obtaining the correct solu-
tion. As both algorithms employ di�erent cost func-
tions, one possible approach could be to repetitively
use both algorithms, the estimates obtained from the
msPMHT initialising the msPLST and vice-versa.

5. CONCLUSIONS

We have presented the multi-sensor Probabilistic Least
Squares Tracking (msPLST) algorithm to estimate
the unknown target states and measurement-to-target
assignments for multiple targets using measurements
from multiple sensors.

We have compared its performance with the multi-
sensor PMHT algorithm, and, although both have sim-
ilarities, the msPLST has superior performance in the
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presence of interfering targets (provided it is correctly
initialised). Neither algorithm guarantees convergence
to the true target states, but their complementary per-
formance may be useful in obtaining the correct solu-
tion.
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