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ABSTRACT

The performance of high-resolution direction �nding meth-
ods degrades in several practical situations where the wave-
fronts have imperfect spatial coherence. The original solu-
tion to this problem was proposed by Paulraj and Kailath,
but their technique requires a priori knowledge of the ma-
trix characterizing the loss of wavefront coherence along
the array aperture. Below, a novel solution to this problem
is proposed, which does not require a priori knowledge of
the spatial coherence matrix. Our technique is based on the
multidimensional minimization of appropriate concentrated
cost function using Genetic Algorithm (GA).

1. INTRODUCTION

High-resolution direction �nding methods [1], [2] are model-
based and, therefore, very sensitive to various types of
model errors [2]. Usually, in direction �nding algorithms
each wavefront is assumed to be perfectly coherent within
array aperture, i.e. its amplitude and phase are supposed
to be fully correlated between any two sensors of the receiv-
ing array. Such perfect coherence of the wavefront implies
that it contributes a rank-one component to the array co-
variance matrix. However, in many practical situations, as,
for example, in sonar and radar, wavefront coherence suf-
fers with increasing spatial separation between array sensors
[3]-[7]. Such wavefront decorrelation can result from signal
propagation through randomly inhomogeneous media [4]-
[6], from scattering at randomly varying surfaces [6], [7],
as well as from other types of stochastic model deviations.
As a result, the high-resolution direction �nding and detec-
tion methods are no longer applicable. In their paper [6],
Paulraj and Kailath have elaborated a statistical model for
sources with partial wavefront coherence and have studied
how the performance of the MUSIC Direction Of Arrival
(DOA) estimator degrades if spatial coherence is ignored in
the signal model. They proposed the elegant technique that
exploits the model developed for improving the estimation
performance of MUSIC algorithm. The main drawback of
their approach is the requirement of full a priori knowl-
edge of spatial coherence matrix characterizing the loss of
wavefront coherence along the array aperture. In practical
situations, this matrix may be unknown.
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Below, a new matrix �tting technique is proposed as a
solution to direction �nding problem in the presence of im-
perfectly coherent wavefronts. Unlike the Paulraj{Kailath
technique [6], our algorithm does not require a priori knowl-
edge of spatial coherence matrix, because the elements of
this matrix are estimated jointly with signal DOA's.

2. PROBLEM FORMULATION

Consider a uniform linear array (ULA) of n sensors. As-
sume that there are q < n narrowband stationary zero-
mean mutually uncorrelated far �eld sources with central
frequency !0. In this paper, we only address the source lo-
calization problem, i.e., the number of sources is assumed to
be known a priori. First of all, consider the case of perfect
wavefront coherence. The ith array vector snapshot can be
modelled as [1], [2]:

r(i) = As(i) + n(i) (1)

where A = [a(�1); : : : ;a(�q)] is the n � q matrix
of the wavefront vectors of each source, a(�) =
(1; e�j!0d sin �=c; : : : ; e�j!0(n�1)d sin �=c)T is the n � 1 wave-
front vector corresponding to the direction �, f�lgl=1;2;::: ;q
are signal DOA's, s(i) is the q � 1 vector of random source
waveforms, n(i) is the n� 1 vector of random sensor noise,
d is the interelement spacing, c is the propagation speed,
and (�)T denotes transpose. The array covariance matrix
[1], [2]

R = Efr(i)rH (i)g = ASA
H + �

2
I (2)

where S is the q� q covariance matrix of signal waveforms,
I is the n�n identity matrix, �2 is the noise variance, Ef�g
and (�)H denote the statistical expectation operator and the
Hermitian transpose, respectively.
Assume now that the wavefronts have imperfect coher-

ence within the array aperture and revisit the underlying
model [6]. Wavefront perturbations can be represented as
multiplicative noise, i.e. the ith snapshot can be modelled
as:

f(i) = (G(i)�A)s(i) + n(i) (3)

where G(i) is the n�q matrix of random wavefront pertur-
bations, and � denotes the Schur-Hadamard (element by
element) matrix product. The elements of matrix G(i) de-
scribe the amplitude and phase 
uctuations of wavefronts,
i.e., [G(i)]lk = �lk(i)e

j�lk(i). It should be noted that unlike
(1), the vector process (3) is always non-Gaussian. This
is the main reason why one cannot use the standard ML
techniques in the situation considered.



Following [6], assume isotropic coherency loss, i.e., con-
sider the case where the loss across the array is the same
for all wavefronts irrespective of their DOA's. Typical sit-
uations arise in long-range ocean acoustic propagation and
electromagnetic propagation in the lower troposphere (see
[7] and references therein). Also, this assumption may be
reasonable when modelling stochastic array deviations [7].
The assumption of isotropic coherence loss means that

the spatial coherence function is independent of the wave-
front index k:

blm = Ef[G(i)]lk[G(i)]�mkg

= Ef�lk(i)�mk(i)e
j(�lk(i)��mk(i))g (4)

where (�)� denotes the complex conjugate. From isotropic
model, it follows that function (4) depends on the separa-
tion between the lth and mth sensors only, i.e., for a ULA
blm = bl�m, whereas the assumption of zero-mean phase

uctuations gives that all bl�m have real values. Addition-
ally, assume that the random wavefront perturbations, the
additive sensor noises, and the source waveforms are all mu-
tually statistically independent. Thus, the array covariance
matrix for the data model (3) is given by

F = Eff(i)fH(i)g = (ASAH)�B+ �
2
I (5)

where [B]lm = bl�m and, without loss of generality, we
assume b0 = 1. This normalization of B is equivalent to
multiplying all snapshot vectors by a constant, and, obvi-
ously, it does not cause any change of the model. Therefore,
I�B = I, and (5) can be rewritten as:

F = R�B (6)

Thus, we conclude that B can be modelled as a real-valued
symmetric Toeplitz positive de�nite matrix [6].

3. MODIFIED MUSIC

For improving the MUSIC algorithm in a situation of im-
perfect wavefront coherence and a priori known spatial co-
herence matrix B, Paulraj and Kailath [6] exploited the
so-called restored array covariance matrix

~R = F̂�B (7)

where

F̂ =
1

N

NX

i=1

f(i)fH(i) (8)

is the sample estimate of the matrix F, N is the number of
snapshots, and � denotes the inverse of Schur-Hadamard
product, i.e. [C�B]lm = [C]lm=[B]lm. This preprocessing
operation allows to �nd a consistent estimate of the matrix
R. After that, the MUSIC algorithm [1] can be applied
straightforwardly to the restored covariance matrix ~R.
The main drawback of this approach is the requirement

of exact a priori knowledge of the spatial coherence matrix
B. In practice, this assumption may be unrealistic. With
imprecise knowledge of matrix B, serious problems can oc-
cur, especially when some elements of this matrix are close
to zero.

4. MATRIX FITTING TECHNIQUE

The non-Gaussian array data vector model (3) does not al-
low for applying the ML algorithms for direction �nding
in the situation of imperfect wavefront coherence. How-
ever, the natural cost function whose global minimum cor-
responds to the required estimates of parameters may be
chosen as:

Z(�) = k ~R�R k
2
F = kF̂�B�R k

2
F (9)

where the minimization is performed over the matrices R
and B. The minimizer of Z(�) can be rewritten as

min
�

trf(F̂�B�R)2g (10)

which corresponds to a least-squares �t and provides a sta-
tistically consistent estimator of the M � 1 vector � of
unknown parameters [7].
According to (2) and (10), we need to estimate q DOA's,

q2 real independent parameters of Hermitian matrix S, the
noise variance �2, and n � 1 real independent parameters
of the matrix B. Therefore the total number of estimated
parameters is M = q(q + 1) + n. Taking into account that
the Hermitian array covariance matrix is de�ned by n2 real
independent parameters, we have that our estimation prob-
lem is well posed if q(q + 1) � n(n � 1). This is, however,
always true because q < n.
Let us now reduce the dimension of the multidimensional

search implied by (10). For �xed source DOA's and matrix
B, the optimum of (10) is achieved for

Ŝ = A
y(F̂�B� �̂

2
I)AyH (11)

�̂
2 =

1

n� q
trfP?

A(F̂�B)g (12)

A
y = (AH

A)�1
A

H
; PA = AA

y
; P

?

A = I�PA (13)

Using (2), (11), and (12), we are able to represent the min-
imization problem (10) in concentrated form:

min
�

tr f ( F̂�B�PA( F̂�B�
1

n� q
trfP?

A (F̂�B)g I )PA

�
1

n� q
trfP?

A (F̂�B)g I )2 g

= min
�

tr f ( F̂�B�PA (F̂�B)PA

�
1

n� q
trfP?

A (F̂�B)gP?

A )2 g (14)

where the (q + n� 1)� 1 vector

� = (�T
;b

T )T (15)

contains the reduced set of estimated parameters:

� = (�1; �2; : : : ; �q)
T
; b = (b1; b2; : : : ; bn�1)

T (16)

If the global minimization (14) is performed then, according
to (11), the �nal estimates of the source powers �2l , l =
1; 2; : : : ; q can be found as

�̂
2
l = [Ây(F̂� B̂�

1

n� q
trfP?

^A
(F̂� B̂)g I)ÂyH ]ll (17)



where Â and B̂ are the �nal estimates of the matrices A
and B.
Unlike the Paulraj{Kailath algorithm, our technique does

not require a priori knowledge of spatial coherence matrix
B, because this matrix is estimated jointly with the source
DOA's.

5. SIMULATIONS

In simulations, we compare DOA estimation performances
of the matrix �tting technique, conventional MUSIC
estimator, and Paulraj{Kailath modi�cation of MUSIC
method. We assumed a ULA with n = 8 sensors and
half-wavelength spacing, and two mutually uncorrelated
equipower signal sources impinging on the array from the
directions �1 = 11� and �2 = 15�. The additive Gaussian
noise is uncorrelated with the sources and between array
sensors and has the same variance �2 in each sensor. We
assumed that wavefront amplitudes do not 
uctuate, while
the wavefront phases have Gaussian independent 
uctua-
tions with sensor-to-sensor phase increment variance �2�.
In other words, the spatial coherence function (4) has been
modelled as [4], [6], [7]:

bl�m = Efej(�lk(i)��mk(i))g = e��
2

�
jl�mj=2 (18)

In all simulation examples, �2� = 0:25 has been taken cor-
responding approximately to �1:086 dB coherency loss at
one-wavelength separation.
Minimization of the cost function (14) has been per-

formed over the parameters (15), (16) using Genetic Al-
gorithm (GA) which is known to converge to a global mini-
mum. This algorithm seems to be suitable for solving mul-
tidimensional optimization problems in parameter estima-
tion and array processing [8]-[10]. However, GA is known
to be computationally expensive. For reduction the compu-
tational burden, the domain of variation of estimated pa-
rameters b = (b1; b2 : : : ; bn�1)

T has been bounded between

b1 = (expf��2�min=2g; : : : ; expf�(n� 1)�2�min=2g)
T and

b2 = (expf��2�max=2g; : : : ; expf�(n� 1)�2�max=2g)
T

(19)
where �2�min = 0:09 and �2�max = 0:49, respectively. Simi-
larly, the estimated DOA's have been bounded too, within
the interval 6� � 20�. This corresponds to a very rough
pre-estimation of the DOA localization sectors by conven-
tional beamformer, which is relatively insensitive to the co-
herency loss compared with the high-resolution direction
�nding methods [3]. The following parameters of GA have
been taken in simulations: number of generations = 100,
number of individuals in one generation = 30, binlength =
20, probability of crosspower = 0:75, and probability of
mutation = 0:001.
A total of 100 independent simulation runs have been per-

formed to compute the experimental Root-Mean-Square Er-
ror (RMSE) of DOA estimation for each algorithm and sim-
ulated point. In all examples, the Paulraj{Kailath method
has been tested in two di�erent modes. The �rst one, re-
ferred to as exact Paulraj{Kailath method, corresponds to
precise a priori knowledge of the coherence matrix B. The
second mode, referred to as approximate Paulraj{Kailath

method, corresponds to the case where this matrix is known
with a small error which can easily occur in practice. In the
second mode we assume that the restored array covariance
matrix (7) is calculated using the imprecisely known ma-
trix B. In turn, this matrix is calculated using the model
(18) and the measured value of �2�, i.e. ~�2� = 0:27. This

corresponds to ' 8% measurement error of �2�.
Fig. 1 compares experimental RMSE's of DOA estima-

tion for conventional MUSIC, Paulraj{Kailath, and matrix
�tting techniques versus the number of snapshots for the
�xed Signal to Noise Ratio (SNR) equal to 20 dB for each
source. Fig. 2 shows the same curves but for absolute values
of DOA estimation bias. Fig. 3 demonstrates experimen-
tal RMSE's of DOA estimation for conventional MUSIC,
Paulraj{Kailath, and matrix �tting techniques versus SNR
for the �xed number of snapshots N = 100. Fig. 4 shows
the same curves as in Fig. 3 but for absolute values of DOA
estimation bias.
It can be seen from Figs. 1 and 2 that for high SNR

the proposed matrix �tting technique signi�cantly outper-
forms both conventional MUSIC and Paulraj{Kailath algo-
rithm in the case of moderate and large number of snapshots
(N < 104). Moreover, in the presence of the small measure-
ment error of the matrix B the performance of Paulraj{
Kailath technique degrades signi�cantly. A surprising fact
following from Figs. 1 and 2 is that for moderate and large
number of snapshots (e.g., for N � 3000) the conventional
MUSIC algorithm can perform better than both exact and
approximate Paulraj{Kailath techniques. This fact can be
explained by weak statistical consistence of the estimate (7)
based on the inverse of Schur-Hadamard product.
Figs. 3 and 4 demonstrate that for moderate number of

snapshots (N = 100) only the proposed matrix �tting tech-
nique can provide satisfactory performance for SNR � 0 dB.
In this situation, performances of conventional MUSIC and
both exact and approximate Paulraj-Kailath techniques de-
grade in the whole range of SNR.
In order to evaluate relative computational loads, we

compared the computational time of matrix �tting and
Paulraj-Kailath technique (MUSIC spectral function has
been calculated with the angular grid 0:1� in the whole
array �eld of view [�90�; 90�]). Our comparison shows that
the matrix �tting technique is more expensive in the situa-
tion considered (approximately with the factor 10). This is
the payment for the improved performance.

6. CONCLUSIONS

A novel matrix �tting approach to direction �nding with
imperfect wavefront coherence is proposed. Unlike the well-
known Paulraj{Kailath method, our algorithm does not re-
quire a priori knowledge of the spatial coherence matrix,
because the elements of this matrix are estimated jointly
with signal DOA's. Genetic Algorithm is exploited for mul-
tidimensional optimization of the appropriate concentrated
cost function. Computer simulations have shown signi�-
cant improvement of DOA estimation performance of the
proposed technique relative to conventional MUSIC and
Paulraj{Kailath methods. The payment for the improved
estimation performance is higher computational complex-
ity.
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Figure 1. Experimental RMSE of DOA estimation

versus the number of snapshots. SNR = 20 dB.
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Figure 2. Experimental absolute bias of DOA estim-

ation versus the number of snapshots. SNR = 20 dB.
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Figure 3. Experimental RMSE of DOA estimation

versus SNR. The number of snapshots N = 100.
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Figure 4. Experimental absolute bias of DOA esti-

mation versus SNR. The number of snapshots N =
100.


