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ABSTRACT

A transmitted and known signal is observed at the receiver
through more than one path in additive noise. The problem
is to estimate the number of paths and for each of them the
associated attenuation and delay. It is a frequent problem in
sonar, radar and geophysics. We propose an algorithm that
is easy to implement, that has a reasonable computational
load and seems to be able to solve the problem under more
severe conditions (lower SNR) than previous methods.

1. INTRODUCTION

Let the observed signal y(t) be modeled as :

y(t) =

PX

p=1

aps(t� �p) + n(t) (1)

This model describes multipath e�ects where the emitted
signal s(t) is observed at the receiver through more than one
path in additive noise n(t). We consider the case where s(t)
is a known deterministic signal. ap denotes the attenuation
and �p the time delay for path p. The number of paths P is
in general unknown. This situation arises in such �elds as
sonar, radar or geophysics. It amounts to model the e�ect of
the propagation and re
exion as an attenuation and a delay
and might well be to simple in many situations. Though (1)
is written in continuous time , the processing will deal with
discrete time samples and we only consider discrete time
signals in the sequel. The delays �p are then non-integer
multiples of the sampling period taken equal to one and we
will assume that the sampled additive noise n(:) is white
and gaussian.

2. THE PROBLEM

Observing yt, the problem is to detect the number of repli-
cas and to estimate fap; �pg for each of them. Under the
gaussian white noise assumption, the maximum likelihood
(ML) method leads to :

min

TX

t=1

jyt �

PX

p=1

aps(t� �p)j
2

In the case of a single path, the minimum in � is attained
by maximizing

P
t
yts(t��). The optimal processing is thus

to apply the matched �lter i.e. to correlate the observed
process y(t) with the known signal s(t � �) and to search

for the maximum. When P > 1, looking for the P highest
peaks in the output of the matched �lter is sub-optimal
unless the pairwise di�erences j�p��lj are large compared to
the temporal correlation of the signal s(t). If this restriction
on the delays is not satis�ed, this technique does not resolve
the di�erent paths and is clearly sub-optimal.

We mainly consider this kind of situations and propose
an algorithm that allows to detect the number of paths and
to resolve them at a reasonable computational cost.
The Maximum Likelihood approach can also handle this

situation. But it requires the knowledge of P the number
of replicas and will converge to the global minimum only
if an excellent initial point is known. For the type of sit-
uations we consider, closely spaced replicas, the maximum
likelihood function has either not enough or too many lo-
cal extrema, this approach is essentially unfeasible. As a
matter of fact, the ML criterion is used in our procedure to
select the best solution among a small number of candidates
and to decide how many replicas are needed to explain the
observations.

2.1. The model

In the simulations at the end of the paper we will con-
sider the case where the transmitted signal is a windowed
linear frequency modulated sinusoid, but the same proce-
dure applies to any situation where the model (1) is valid.
As a matter of fact we will not perform any demodulation
and work with the raw real data. We are then in a situa-
tion where the maximum likelihood has many local extrema
and will yield a good estimate only in the case where a pre-
cise initial point is already known. The di�culty is then to
obtain a good initial point.

The algorithm we propose overcomes these di�culties
and performs simultaneously the detection and estimation.
It uses as observations the output of the matched �lter. De-
noting by over-bars the result of this operation and switch-
ing to discrete time, relation (1) becomes :

�yk =

PX

p=1

ap�s(k � �p) + �nk (2)

where �nk is no longer white noise. Since the di�culty we
are considering is to resolve closely spaced paths and not to
detect an isolated extremely weak replica, the localization
of a limited zone of interest in this output �yk is an easy task



since the SNR's will be reasonable for all the paths. The
interesting part of the output of the matched �lter will then
typically be of length one or two hundred. De�ning precisely
how to characterize the interesting part of �yk is of course
not an easy task. We do not consider this issue here. In
the con�guration we consider in the simulations the results
are quite unsensitive to this choice which becomes delicate
only in more di�cult scenarios.

2.2. The scheme of the approach

Let us denote by L, the length of the interesting part of �yk
and by Y the column vector built upon these samples. This
choice also �xes the domain in which the delays are to be
sought. If the interesting part of �yk extends over L samples,
the potential delays will generally belong to an time interval
around the middle of Y of length a fraction of L.
Associated with Y , one can build in an obvious way P

vectors S�p such that (2) can be rewritten as :

Y =

PX

p=1

ap S�p + noise (3)

Observing Y and knowing that it admits such a decompo-
sition, our objective is to reconstruct it as a linear combi-
nation of a small number of such vectors, we denote Sm.
These vectors of length L are built upon samples of �sk and
each of it is associated with a given delay. These delays
to be chosen among M preassigned values spread over the
potential domain of interest, We thus seek a reconstruction
of Y of the form :

Y '
X

m

�m Sm + noise ' S � + noise (4)

with S an (L,M)-matrix and � an M-dimensional column
vector containing the unknown weights �m. Note that, if
the true delays are among the M preassigned values, (3)
is precisely of this form and the weighting vector � has
then exactly P non-zero components. With this lineariza-
tion procedure, the delay-estimates are hidden in the indices
of the non-zero components of �.
The whole problem is now to de�ne a criterion that al-

lows, observing Y and knowing S in (4) to compute the
optimal weights �. Ideally their should be a very small
number of "clusters" of non-zero weights , each cluster rep-
resenting a replica.

3. DELAY ESTIMATION AND

INTERPOLATION

3.1. Introduction

One should note at this point that there are two sampling
periods involved in this modelisation (4). The �rst is the
sampling period of the data and is taken equal to one, the
second is equal to the delay, we denote h, existing between
two consecutive columns Sm and Sm+1 of S in (4). Though
these two periods need not be linked together we gener-
ally choose the second one to be a fraction of the �rst one.
One must realize that, even in the absence of noise, if one
of the true delays �p in (3) does not belong to the set of

M potential delays we are considering, forcing the identity
between S�p and

P
m

�m Sm amounts to solve an inter-
polation problem. Indeed, in each of the linear equations
(rows) of S�p =

P
m

�m Sm one reconstructs one sam-
ple of �s(k��p) using equispaced samples �s(nh) of �s(t). The
weights �m are thus samples from an interpolating function
and our approach which can be seen as a model-�tting or
deconvolution approach amounts to estimate the samples
of an interpolating function and to deduce the number of
replicas and their characteristics from the peaks of the es-
timated interpolating function. This is exactly what was
already proposed in [4] in 1980.
The most well-known interpolating function is the sinus

cardinal which works for the reconstruction of functions
whose Fourier transform is band-limited provided the sam-
pling period is small enough to satisfy the Nyquist (Shan-
non) rate. Though in our context, the conditions that allow
perfect reconstruction are not all satis�ed -the function �s(t)
may not be bandlimited, the numberM of available samples
is not in�nite and there is additive noise present,- it is this
feature of the approach that is important to understand.
In general, using weights that are samples of the interpo-

lating function, one reconstructs the value of the signal at a
given point from its values at an in�nite number of equisp-
aced points. Here, we work the other way round, we known
both the interpolating value and the in�nite sequence of val-
ues and seek estimates of the weights. To make the problem
solvable we actually know L interpolating values and seek
an unique sequence of weights that allows the reconstruc-
tion. In fact, with P the number of replicas, what we will
estimate are samples from the superposition of P weighted
and shifted interpolating functions.

3.2. Interpolation in case of oversampling

There is one important parameter we are allowed to ad-
just and this is the sampling period h. Indeed as explained
above, the sampling period of the observations yt is essen-
tially imposed by the application and is only related to the
number L of equations in (4). The sampling interval that
intervenes in the interpolating function is the time inter-
val h that exists between two contiguous columns of S in
(4) and this interval h can be chosen. One somehow ex-
pects that if one chooses h small enough, the interpolation
problem is easier...
Obviously, assuming �s(t) to be band-limited, h has to be

chosen small enough to satisfy the Nyquist rate, but it can
indeed be chosen much smaller. If one tries to interpolate
an over-sampled signal there are an in�nite number of ways
to reconstruct it. Indeed, consider for instance an over-
sampling ratio of two, one can then reconstruct any point of
the function using just the odd samples or the even samples
or any convex combination of these two ways. Here since
we actually estimate the interpolating function, the precise
interpolating function that will come out of the estimation
procedure, in case of oversampling, entirely depends upon
the criterion we use to minimize Y � S �. Our aim is
thus to de�ne a criterion, that will single out an interpo-
lating function that is as close as possible to an impulse.
Remember that the �'s we estimate are samples from the
superposition of P weighted and shifted interpolating func-
tions and that we want to deduce the number of replicas



and their characteristics from the peaks of the underlying
function.

By decreasing h it is always possible to have more un-
knowns than equations (M � L) and thus have an in�nite
number of solutions to Y � S �. The most common way
to select one solution is probably to choose the minimum
`2 norm solution. One can show that this leads to weights
that are samples from the standard sinus cardinal function
scaled by the Nyquist rate. Diminishing h though allow-
ing intuitively for a more localized reconstruction will sim-
ply lead to further oversampling the same standard sinus
cardinal function. This is thus an extremely bad way of
selecting a solution. What we say is that, under the con-
ditions for which the standard sampling theorem holds, if
one oversamples the function to be reconstructed, there are
many ways to reconstruct any point between the samples. If
one seeks the reconstruction function (or equivalently the
weights) with minimal `2 norm, then one obtains as re-
construction function the sinus cardinal associated with the
Nyquist rate. Oversampling the function in order to obtain
a more localized reconstruction formula is useless if this cri-
terion is used since it is always the same underlying function
that will yield the weights.

Minimizing the `1 norm of the interpolating function
(weights) happens to be one criterion that leads to pretty
localized reconstruction formulas. Indeed one expects that
for h small enough, linear interpolation should lead to a
close-to-perfect reconstruction and minimizing the `1 norm
of the weights is a criterion that almost leads to this way of
reconstructing a point in between two samples. The corre-
sponding interpolating functions are analysed in [5] and are
shown in Figure 1 and 2. together with those of minimal `2
norm.

In Figure 1, we consider an oversampling ratio of two and
the resulting sampling period is taken equal to one. One of
the curves is the standard sinus cardinal (divided by two)
which is the interpolating function with minimal `2 norm.
The *'s on this curve indicate the weights to be assigned to
the samples when the midpoint between two samples has
to be reconstructed, only the weights to be assigned to the
8 neighboring points on both sides are presented though,
of course, an in�nite number of samples and weights are
needed to achieve a perfect reconstruction. The other curve
is the the interpolating function with minimal `1 norm. The
o's on this curve are the weights, with minimal `1 norm, to
be assigned to the samples when the midpoint between two
samples has to be reconstructed. Since the function van-
ishes for jtj 2 [2k � 1; 2k] with k > 0, one notices that
except for the two neighboring points in positions �:5 only
one every second sample point is used in the reconstruction
so that there are only fours o's on both sides. In Figure
2, the same curves are drawn for an oversampling ratio of
three. The resulting sampling period is again taken equal
to one. As explained above miminizing the `2 simply leads
to di�erent samples of the same function in the continuous
time scale, while minimizing the `1 norm further improves
the localization of the interpolating function. If one in-
creases the oversampling ratio even further, minimizing the
`1 norm of the weights allows to conclude that linear inter-
polation is close to perfect.

4. THE PROPOSED APPROACH

From the results described above and established in [5], we
conclude that minimizing the `1 norm of the weights should
lead to a quite e�cient algorithm. The �rst idea would thus
be to solve the following optimization problem :

min k � k
1

s:t: Y � S � = 0 LP1

where k � k
1
stands for the `1 norm of � . Since this

problem can be converted into a linear program [6] it has
a unique miminum that is easily and quickly obtained even
for large L (the number of linear equality constraints) and
M (the number of unknowns) using standard available pro-
grams. This is however too simple an approach since it does
not take into account the presence of the additive noise (3).
Remember that this is -at best- �ltered white noise (2) and
may have quite a large variance. It is thus unjusti�ed to
ask for a perfect match between Y and S �. A �rst im-
provment can be obtained by introducing a tolerance in the
linear constraints. This leads to :

min k � k
1

s:t: jY � S �j � � LP2

where � is the tolerance, a positive real constant and the
inequality constraint has to be taken componentswise and
is thus equivalent to kY � S �k

1
� �. This problem also

can be rewritten as a linear program. The tolerance � is
an important parameter that has to be tuned. Once this
feature is introduced, the inequality M � L has no longer
to hold since, for � large enough, feasible points exist even
if it not satis�ed. The same holds for the conclusions drawn
in section 3.2. As a matter of fact, for the results presented
below we introduced a further modi�cation and actually
whitened the Y vector and the S matrix accordingly. This
appears to be bene�cial once a limited section (of length L)
of the output of the matched �lter has been selected but
of course uses the assumption that the initial noise (1) is
white and gaussian and removes some robustness from the
procedure. Similar ideas and further details can be found
in [3].

5. A SIMULATION RESULT

Let us describe the scenario for which we present some sim-
ulation results below. We take [2] :

st = wt : sin(2�(�t
2 + �t)) t = 0; 1; ::N � 1 (5)

where N = 750; � = (f2 � f1)=2N;� = f1; f1 = :1; f2 = :15
and wt is a window function equal to :

wt = 0:5� 0:5cos(�
t

Nw

) t = 0; 1; ::Nw � 1

wt = 1: t = Nw; ;N �Nw � 1

wt = 0:5� 0:5cos(�
t�N

Nw

) t = N �Nw; ::N

wt = 0 otherwise

A three path received signal is generated as :

yt = st�200�:8 st�204+:4 st�220+nt; t = 0; :::;999 (6)



and the gaussian white noise variance v is tuned to yield
the desired SNR.
Some simulation results obtained using the above de-

scribed philosophy are presented below. They are obtained
using a more elaborate version than those described above.
L is taken equal to 250 is the samples are taken symmet-
rically around the global maximum of the output of the
matched �lter. The Y vector is whitened using the inverse
of a square root of the covariance matrix of Y computed
once and forever with the help of s(t). The potential delays
cover a domain placed symmetrically around the maximum
of the output of the matched �lter of size 60. This means
that if the oversampling ratio is taken equal to 5, one has
M = 301 potential values of the delays. Several values of
the tuning parameter are considered for each realization.
For each of them, the ML criterion is used to re-estimate
the amplitudes and to detect the number of replicas using
an Akaike like criterion. The best ML solution is retained
among these candidates for each realization.
We performed 400 independent trials of the scenario de-

scribed in (6) with a noise variance v = 49:10�4.This is
already a quite di�cult con�guration. The results are pre-
sented in Table 1 forM = 301 corresponding to h = :2. The
procedure correctly (and easily) decided that the number of
replicas was three and estimated theirs characteristics in all
the 400 realizations.

replica number 1 2 3

replica SNR in dB 48 46 40

true delay 200 204 220

estimated delay 200.009 203.988 219.993

est. stdt dev. delay .0245 .0360 .0346

CR stdt dev. delay .0220 .0293 .0185

true amplitude 1 - 0.8 0.4

estimated amplitude 1.0034 -.7966 .3994

est. stdt dev. amplit. .0181 .0190 .0059

CR stdt dev. amplit. .0175 .0186 .0059

Table 1. Results over 400 trials for the 3 replicas

process.

One should note that the correlation of the st (5) is in-
deed highly oscillatory and adjacent peaks may have nearly
equal height making the estimation problem quite di�cult.
The bound on the variance of the estimates given by the
Cramer-Rao inequality, which considers only the curvature
of the highest peak is then relevant only for reasonably high
SNR's. The method is quite promising because the major
di�culty for this type of problem is by far to avoid local
minima and the results in the table indicate that this is the
case. Obviously the solution given by our method in all
the 200 trials is in the domain of attraction of the global
optimum.
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Figure 1. Two examples of the central part of inter-

polating functions in case of an oversampling ratio

of two. The resulting sampling period is taken equal

to one. The minimal l1 norm interpolating function

decreases rapidly to zero and uses one sample out of

two. The minimal l2 norm interpolating function is

a sinus cardinal function, decreases slowly towards

zero and uses all the samples
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Figure 2. The same as in the �gure 1 above for an

oversampling ratio of three. The resulting sampling

period is again taken equal to one. The minimal

l1 norm interpolating function decreases rapidly to

zero and uses one sample out of three. The mini-

mal l2 norm interpolating function is the same as

in �gure 1, decreases slowly towards zero and uses

all the samples


