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ABSTRACT

This paper considers a method for estimating time delays,
amplitudes, and Doppler scales of a multipath signal. The
method is an extension of work previously reported by Man-
ickam and Vaccaro [1] which dealt solely with time delays
and amplitudes, and extended by Habboosh and Vaccaro
[2] to include Doppler scale. In this paper, an algorithm is
presented for determining the size of the indicator set to re-
duce ill-conditioning of the signal subspace matrix. Simula-
tion results are shown and comparisons to the Cramer-Rao
lower bound provided; these results show that signi�cant
reduction in estimate variances can be achieved using the
deconvolution approach with a properly selected indicator
set.

1. INTRODUCTION

This paper considers a method for estimating time delays,
amplitudes, and Doppler scales of a multipath signal. The
method is an extension of work previously reported by Man-
ickam and Vaccaro [1] which dealt solely with time delays
and amplitudes, and extended by Habboosh and Vaccaro
[2] to include Doppler scale.
The sampled received signal model is described mathe-

matically as

r(nTs) =

MX
m=1

ams(dm(nTs��m)) + w(nTs); 0 � n � N�1

(1)
where, s(t) is the transmitted signal, am, �m, and dm are
the attenuation value (amplitude), time delay, and Doppler
scale factor, respectively, for path m, N is the number of
samples in r, Ts is the sample period, and w(nTs) is zero
mean white Gaussian noise with variance �2w. The prob-
lem is to estimate the unknown amplitudes, delays, and
Doppler scale factors. This signal model, unlike those gen-
erally used, does not assume a narrowband signal and there-
fore does not assume the Doppler scale to be approximated
by a frequency shift. Also, (1) allows for time delays which
are non-integer multiples of Ts.
The properties of the transmitted signal play an impor-

tant role in the performance of any delay/Doppler estima-
tion method. The most critical property is a narrow am-
biguity function in both the delay and Doppler axes. The
ambiguity function using sampled data is de�ned as the
magnitude squared of the two dimensional autocorrelation
function and is described mathematically as

c(�; d) =

�����
1X

n=�1

s(nTs)s
�(d(nTs + �))

�����
2

: (2)

One signal which has the desired property is the
frequency-hopped Costas signal described in [3], which is
mathematically described as

�(t) =

H�1X
h=0

ph(t� hTp) (3)

where,
ph(t) = ej2�fht; 0 � t � Tp
ph(t) = 0; elsewhere

and,
fh = ah

Tp

Tp = T

H

ah = fa0a1 : : : aH�1g

and the ah are selected according to [3] to have the appro-
priate property.
The parameters of the transmitted signal, used through-

out this discussion, are given by

Ts = 25�S
T = 15:0mS
a = f7 1 3 6 4 5 2g
H = 7:

(4)

This paper considers the generalized delay/Doppler esti-
mation problem and therefore assumes nothing about the
bandwidth of the signal.
A deconvolutionmethod for the problem without Doppler

(i.e., dm = 1) was given by Manickam and Vaccaro [1]. It
was shown in [2] that this algorithm does not perform well
when dm 6= 1, providing the impetus for the development
of the two-dimensional delay/Doppler estimation algorithm
of [2], described brie
y in the following section.

2. DELAY/DOPPLER DECONVOLUTION

This section brie
y describes the two dimensional de-
lay/Doppler estimation problem. The discrete time signal
model is de�ned by

r = Sh+w (5)

where, r and w are the N � 1 vectors containing r(nTs)
and w(nTs) in (1), S is the N �M matrix with columns
containing s(dm(nTs��m)) in (1), and h is theM�1 vector
containing the coe�cients am. The matrix S is de�ned by

S =

2
664

Ss 0T � � � 0T

0T Ss � � � 0T

...
... � � �

...

0T 0T � � � Ss

3
775 : (6)



The submatrices appearing in S are denoted

Ss =

2
64

s(0) � � � s(0)
s(d1Ts) � � � s(dQTs)

...
...

...
s(d1(P � 1)Ts) � � � s(dQ(P � 1)Ts)

3
75 (7)

and the vector 0 is de�ned as a Q� 1 vector of zeros. Each
column of the matrix Ss consists of the transmitted signal at
some value of Doppler scale. The expected range of Doppler
scales is quantized into Q di�erent values d1; � � � ; dQ, and
the entire Ss matrix is delayed to form the columns of S.
The vector h is partitioned into subvectors of length Q

h =

2
64

h0
h1
...

hN�P

3
75 : (8)

Each subvector corresponds to a delay value and entries
within a subvector correspond to a Doppler value.
If the received signal consists of components which are de-

layed by integer multiples of Ts and Doppler scaled by one
of the Q quantized values, then, in the absence of noise, the
subvectors hi of (8) will contain at most a single nonzero en-
try. If a nonzero entry occurs in the subvector hk, then the
corresponding time delay is �k = kTs and the amplitude ak
is the value of the nonzero entry. Also, if the nonzero entry
occurs in the jth element of hk, then the Doppler scale for
that component is dj. In general, the delays and Doppler
scales are non-integer multiples of their corresponding sam-
pling intervals and the vector h must be interpolated. This
two-dimensional interpolation is currently being addressed.
In the presence of noise, a least squares solution must be

found for h and the matrix S will be ill-conditioned. Un-
der these conditions, a two-dimensional indicator set must
be de�ned, which is used to select columns of the matrix
S. The reduction in the size of the matrix S will be more
signi�cant than in the one dimensional case, because of the
addition of the Doppler dimension to the problem.
The maximum of j

P
rs�j2, under conditions of white

Gaussian noise and single path, provides the Maximum
Likelihood Estimate (MLE) of both delay and Doppler [4].
However, if the spacing between paths ( in both delay and
Doppler) is smaller than the width of the signal autocor-
relation (ambiguity for delay and Doppler) function, then
the ambiguity function will only reveal one path. Under
these conditions, deconvolution will provide estimates of
both paths.
The two dimensional indicator set is determined by �nd-

ing the delay and Doppler samples corresponding to the
ambiguity function peaks and de�ning a rectangular win-
dow around each one. The window is 11 samples in the
delay direction and 7 samples in the Doppler direction re-
sulting in 77 delay-Doppler pairs (the selection for the size
of the indicator set will be discussed in the next section),
corresponding to columns of the S matrix which are used
to form SE in

r = SEhE +w: (9)

Although SE is signi�cantly better conditioned than S be-
cause of the removal of all columns not in E, there is still a
possible ill-conditioning problem in the presence of noise.

3. INDICATOR SET SELECTION

In the previous section, it was shown that if the indicator
set includes the correct paths, a single least squares decon-
volution will provide some results as to the true path delay
and Doppler along with an estimate of the amplitude. How-
ever, when the indicator set is too large, ill-conditioning of

the S matrix can result because signi�cant noise is allowed
into the estimate, providing poor estimates of delay and
Doppler.
This section provides an algorithm for determining the

indicator set for two closely spaced, equal amplitud paths
with delay and Doppler values equal to grid samples. It
will be shown that with proper selection of the indicator
set, the variance of the estimated delay and Doppler will be
much smaller than that achieved when using a rectangular
indicator set as described earlier.

3.1. Size of Rectangular Indicator Set

The size of the rectangular indicator set, described in Sec-
tion 2. was determined such that it encompasses all possi-
ble delay/Doppler combinations of two paths which result
in a single ambiguity function peak. Figure 1 provides a
graphical representation of these combinations. The circles
represent the di�erence in delay and di�erence in Doppler
(in samples) for the two paths. Since the maximum delay
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Figure 1. Graphic of path pairs which cause single
peak in ambiguity function

spread is 5 samples and maximum Doppler spread is 3 sam-
ples, the indicator set is de�ned as �5 delay samples and
�3 Doppler samples centered at the peak of the ambiguity
function. However, for many of the cases listed in the table,
this indicator set is too large and causes ill-conditioning of
the S matrix. The algorithm described in this section takes
advantage of the shape of the ambiguity function to gen-
erate an indicator set contour which signi�cantly improves
the S matrix conditioning.

3.2. Ambiguity Function Peak Analysis

The ambiguity function, described by (2), can be written in
vector form as

Z(�;D) = (sHr)�(sHr) = A�A (10)

where, s(�;D) is the discrete time transmitted signal. This
is a nonlinear function of both delay and Doppler scale,
making prediction of the peak location di�cult. Therefore,
a quadratic approximation to this function is used and is
given by

Z(�;D) � Z(�0) +5� Z(�0) � (� � �0)

+ 1
2(� � �0)

TH(�0) � (�� �0)
(11)

where,

� = [ �1 �2 ]T = [ � D ]

�0 = [ �01 �02 ]T = [ �0 D0 ]T ;



and H(�0) is the Hessian matrix evaluated at �0 and the
point of expansion (�0; D0) is the mean of the true path lo-
cations. With a high SNR assumption, noise square terms
are ignored resulting in estimates of the mean and covari-
ance of the ambiguity peak location. The covariance matrix
de�nes an elliptical error contour based on the noise vari-
ance (i.e., SNR). The center of the ellipse is located at the
mean.

3.3. Generating the Scale Table

The error contours de�ned in the previous section are used
in this section to predict the minimum indicator set size and
shape which will contain the true path pairs. The results of
the previous section have shown that the peak location of
the ambiguity function can be located within an elliptical
contour which is a function of both SNR and the relative
location of the true path pairs. Since, in the processing
of the signals, the true path locations are not known, only
the ambiguity function can be used to make the location
estimate. The algorithm described in this section is used to
create a look-up table which relates the orientation angle of
the ambiguity function to the path pair relative separation
in both delay and Doppler. In this section, the path pair
delays are (100, 102) samples and the Dopplers are (5, 4)
samples.
The noise-free ambiguity function is thresholded to 95%

of its peak value and the resulting contour found using Mat-
Lab (solid line in Figure 2). The nearly vertical lines at 99.5
and 102.5 delay samples are due to the narrow width of the
ambiguity function in the delay direction. The estimated
location of the peak (shown by the � in Figure 2) is found
by performing an ellipsoid interpolation through the nine
samples near the highest value of the ambiguity function.
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Figure 2. Generating the Ellipse which Normalizes
the Ambiguity Contour

An ellipse is �tted to the ambiguity function contour with
center at the peak and shown as a dashed line in Figure 2.
The �tted ellipse is normalized to have major axis length of
1 (dotted line in Figure 2. Derivations of the elliptical �t
and normalization method are provided in [5].
The �nal stage of the algorithm is to determine the min-

imum scale factor that, when applied to the normalized
ellipse, ensures that the resulting ellipse will include the
two paths under investigation. This is done by centering
the normalized ellipse at each point along the error ellipse,
computing the required scale factor for that center, and re-
porting the maximum of these values.
A table is generated which contains the SNR, the minor

axis length of the normalized ellipse, the orientation angle
of the ellipse, and the maximum scale factor required to
ensure the ellipse contains both paths.
The following section describes how noise-corrupted sig-

nals are processed, using the table described above.

3.4. Processing the Signals

Before processing noise-corrupted signals, the stored table
is divided into two tables: (1) containing those pairs cor-
responding to ambiguity contour orientation angles greater
than 90o and (2) containing those pairs corresponding to
ambiguity contour orientation angles less than 90o. The
two tables are then each sorted by increasing minor axis
length.
When noise-corrupted signals are processed, the ambigu-

ity function is �rst computed. It is then thresholded at 95%
of its peak value and the location of the peak found via the
ellipsoid interpolation described above. An ellipse is �t to
the 95% contour and normalized as described above. The
correct table is selected by determining the orientation an-
gle of the normalized ellipse. Then, the correct scale factor
is determined by �nding the minor axis length, from the
table, which is closest to the computed minor axis length.
The selected scale factor is used to scale the normalized
ellipse, from which the indicator set is selected. Those sam-
ples which lie within the scaled ellipse are used as E in (9)
to compute the channel impulse response.
Figure 3 shows the the elliptically shaped indicator set

and a rectangular one. The size of the rectangular one,
shown by the combination of un�lled and �lled circles in
the �gure, is selected such that it encompasses all of the de-
lay/Doppler pairs which result in a single ambiguity func-
tion peak. The �lled circles in the �gure represent those
samples used for the elliptical indicator set. The result-
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Figure 3. The elliptical and rectangular indicator
sets for path pair 11 and 20 dB SNR

ing channel response estimates, using both indicator sets,
are shown in Figures 4 and 5. Since the S matrix, using
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Figure 4. Channel response estimate using rectan-
gular indicator set as shown in Figure 3

the elliptical indicator set, is less ill-conditioned and allows



less noise than that of the rectangular one, a considerable
improvement in the channel response estimate results.
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Figure 5. Channel response estimate using elliptical
indicator set as shown in Figure 3

Simulations were conducted for the di�erent cases in Fig-
ure 1 with an SNR of 20 dB and the results are shown in
Figure 6. From these �gures, it is clear that even at high
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Figure 6. Delay and Doppler estimate comparison
for path 1. Elliptical indicator set (solid) and rect-
angular indicator set (dashed)

SNR, a signi�cant performance improvement results from
using a smaller indicator set which encompasses the true
paths. This occurs because the S matrix becomes less ill-
conditioned with reduced size.
Figure 7 shows the results of simulations as a function of

SNR for the current example and again verify that the el-
liptical indicator set provides improved results as a function
of SNR, over the rectangular indicator set.

4. SUMMARY

This paper introduced an extension to the deconvolution
approach of [1] to the problem with Doppler scale. Unlike
[6, 7], this delay/Doppler Deconvolution does not make the
narrowband signal assumption, and provides the estimate
with a single least squares deconvolution step. The results,
in the absence of noise, show that even extremely closely
spaced paths can be recovered using this approach, even
when the ambiguity surface cannot distinguish these paths.
An algorithm for determining a reduced size indicator

set for pairs of closely spaced multipaths was also provided.
It was shown that, with proper selection of the indicator
set, the conditioning of the S matrix can be signi�cantly
improved, resulting in considerable performance improve-
ments.
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Figure 7. Delay and Doppler estimate comparison
for current example vs. SNR. Elliptical indicator
set (solid) and rectangular indicator set (dashed)
and Cramer-Rao bound (dash-dot)

The deconvolution approach can prove useful in cases
where accurate delay estimates are required, such as ve-
hicle tracking. The Doppler scale estimate can prove to be
a valuable tool in determining the type of signal path, i.e.,
direct or re
ected and can be used to eliminate the e�ects
of vehicle motion on the received signal.
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