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ABSTRACT

In this paper, wavelet denoising is applied in time de-
lay estimation between signals received at two spatially
separated sensors in the presence of noise. Prior to
cross correlation, each of the sensor outputs is denoised
according to a novel thresholding rule in order to in-
crease the input signal-to-noise ratio. Unlike conven-
tional generalized cross correlators (GCCs), it does not
require spectral estimation of the source signal and the
corrupting noises which may introduce large delay vari-
ance. It is proved that the delay estimate provided by
the proposed method is globally convergent to the true
value with a high probability. Computer simulations
illustrate that the technique outperforms other GCCs
for di�erent SNRs when the sampling rate is su�ciently
high.

1 INTRODUCTION

Extraction of time di�erence of arrival (TDOA) be-
tween signals received at two spatially separated sen-
sors has been widely used in sonar and radar to �nd
the position and to detect the speed of a target trans-
mitter [1]. Other applications are found in seismol-
ogy, biomedical engineering, digital communications
and global positioning system [2]. Mathematically, the
received signals are represented by

x(k) = s(k) + n1(k)

y(k) = �s(k �D) + n2(k); k = 0; 1; :::; L� 1
(1)

where s(k) is the source signal, n1(k) and n2(k) are the
uncorrelated zero-mean Gaussian noises, � 2 (0; 1) is
an attenuation factor, and L is the number of sam-
ples in each snapshot received at the two sensors.
The parameter D is the TDOA to be determined.
Many of the methods proposed for time delay esti-
mation are related through a generalized cross corre-
lation (GCC) approach [3]. In this scheme, each re-
ceived signal is passed through a pre�lter prior to tak-

ing cross correlation. Examples of well known pre�lters
include smoothed coherence transform (SCOT), maxi-
mum likelihood (ML) [3], Hassab-Boucher (HB) [4] and
the Wiener processor [5]. Generally speaking, the in-
troduction of the pre�lters is to enhance the frequency
bands when the signal is strong and to attenuate the
bands when the noise level is high. However, the imple-
mentation of such �lters usually requires spectral esti-
mation of the transmitted source as well as corrupting
noises. As a result, large delay variance may be arisen
particularly for short data length. Moreover, the GCCs
often assume s(k) to be a Gaussian process which hin-
der their usage in many practical applications.

The aim of this paper is to devise an e�ective method
for accurate TDOA estimation when the source signal
is deterministic, speci�cally for a pure sinusoid that is
commonly used in radar and certain types of underwa-
ter acoustic systems [6]. The signal is expressed as

s(k) = a(k) sin[wok + �(k)] (2)

where a(k), wo and �(k) represent the transmitted en-
velope function, central radian frequency and phase
function respectively. The proposed system consists of
two subunits and is depicted in Figure 1. Wavelet de-
noising (WD) technique is �rst applied to each received
signal to recover the corresponding source waveform by
removing the contamination. The restored signals are
then cross correlated and the delay estimate is given
by the time argument at which the cross correlation
function attains its maximum value. It can be con-
sidered as a generalized cross correlator but spectral
estimation of the signal and noise spectra is avoided.
Section II will describe the denoising based time de-
lay estimation method in detail. In particular, a novel
threshold is derived according to Neyman-Pearson the-
ory of hypothesis testing [7]. The global convergence
of the proposed method is proved in Section III. Fi-
nally, computer simulation for performance evaluation
is presented and conclusions are drawn in Section IV.
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2 THE PROPOSED METHOD

In this section, we �rst derive the denoising technique
for removing the noisy component from x(k). It con-
sists of three steps, namely, taking wavelet transform
of the received signal, thresholding the wavelet coe�-
cients, and performing inverse wavelet transform of the
modi�ed coe�cients. Without loss of generality, we
choose L = 2J+1, where J is a positive integer and de-
note the powers of n1(k) and n2(k) by �

2. For notation
convenience, let X = [x(0) x(1) � � � x(L � 1)]T , S =
[s(0) s(1) � � � s(L�1)]T , N1 = [n1(0) n1(1) � � � n1(L�
1)]T and let Tw be a L�L orthonormal wavelet trans-
form matrix formed by a set of quadrature mirror �lter
coe�cients. In vector form, the transformed output Z
is related to the input vector X by Z = TwX , where
Z = [z(j; i); j = �1; 0; 1; � � � ; J ; i = 0; 1; � � � ; 2j � 1]T .
The indices j and i represent the scale level and the
position localized in each scale, and z(�1; 0) denotes
the remaining low-pass �ltered coe�cient. Since Tw is
a linear transform matrix, Z can be decomposed into
Z = Zs+Zn1 , where Zs = [zs(j; i)] and Zn1 = [zn1(j; i)]
are the wavelet transforms of the source signal vector
S and the corrupting noise vector N1 respectively. For
most radar signals in the form of (2), there are many
small magnitude terms in Zs and wavelet transform is
e�ective in compressing this type of signals. Note that
Zn in this case is still a Gaussian vector as Tw is or-
thonormal. The main idea of signal restoration using
wavelet denoising is to adapt each z(j; i) to make its
value close to zs(j; i) so that a good approximation of
s(k) can be obtained after taking inverse wavelet trans-
form.
Based on the well known Neyman-Pearson lemma,

an e�ective thresholding rule for adjusting the wavelet
coe�cients is designed. This lemma is stated as follows.
Let z be a Gaussian random variable with known vari-
ance �2 and a test is conducted upon the hypotheses
H0 : Efzg = �o versus H1 : Efzg 6= �o. Denote the
decision of hypothesesH0 andH1 asD0 and D1 respec-
tively. The type II error P (D0 j H1) will be minimized
for a given type I error � = P (D1 j H0) if H0 is assured
when z falls within the interval

jz � �oj �
p
2�erf�1(1� �) (3)

where

erf(v)
4
=

2p
�

vZ

0

e�t
2

dt (4)

The denoising method is to discard individual element
in Zs that is predicted to be small in magnitude. For
each z(j; i), a decision is made between the hypotheses,

H0 : Efz(j; i)g = 0 versus H1 : Efz(j; i)g 6= 0 (5)

Since Efz(j; i)g = zs(j; i), the above test is simply to
check on each unknown wavelet coe�cient zs(j; i) to
see whether it is null or not.

Applying the Neyman-Pearson lemma, the wavelet
coe�cient z(j; i) is regarded as totally due to noise if

jz(j; i)j � �
4
=
p
2�erf�1(1� �) (6)

As a result, zs(j; i) will be estimated as ẑs(j; i) which
is given by

ẑs(j; i) =

8<
:

z(j; i) ; jz(j; i)j � �

0 ; otherwise
(7)

Similarly, the received signal y(k) is denoised. The
restored signals of s(k) and �s(k�D), denoted by ŝ(k)
and �ŝ(k � D), respectively, are then constructed by
inverse transform of the modi�ed wavelet coe�cients.
Finally, the delay estimate D̂ is given by the peak of
the cross correlation function of ŝ(k) and �ŝ(k � D),
that is,

D̂ = argmax
�
ff̂(�)g (8)

where

f̂(�)
4
=

�

L

L���1X
k=0

ŝ(k)ŝ(k �D + �) (9)

3 PERFORMANCE ANALYSIS

Denote the ideal cross correlation function by f(�) = �

LPL���1

k=0 s(k) s(k�D+�). For simplicity, the functions

f̂(�) and f(�) can be expressed as f̂(�) = �
L
ŝT
1� ŝ2� and

f(�) = �

L
sT
1�s2� , where ŝ1� , ŝ2� , s1� and s2� are the

corresponding data blocks of length L�j� j. Their mean
square di�erence is bounded by

Efjf̂(�) � f(�)jg2

=
�2EfjŝT

1� ŝ2� � sT
1�s2� j2g

L2

=
�2Efj(ŝ1� � s1� )

T ŝ2� + sT
1� (ŝ2� � s2� )j2

L2

� 2�2Efkŝ1� � s1�k2kŝ2�k2 + ks1�k2kŝ2� � s2�k2g
L2

� 4

L
�Es (10)

where

Es
4
=

t2Z

t1

js(t)j2dt (11)
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�
4
= (2 log(L) + 1)[�2 +

X
j;i

minf�2; z2s (j; i)g] (12)

The signal s(t) represents the continuous version of
s(k) which vanishes for t =2 [t1; t2]. Under more re-
strictive conditions, say s(t) and the wavelet function
are both smooth enough, it can be derived further that
� = O(log2(L)) [8]. Therefore, when L tends to in�nity,

Efjf̂(�)�f(�)j2g will tend to 0 which implies that the
estimator is consistent. Moreover, as L ! 1 and for
any given small tolerance � > 0, using the Chebyshev's
inequality we have

Pfjf̂(�) � f(�)j > �g � Efjf̂(�) � f(�)j2g
�

! 0 (13)

This veri�es that f̂(�) uniformly converges to f(�) with
high probability. The convergence, however, is not in
the mean square sense but uniformly. This strong con-
vergence property enables us to prove that if the dis-
crete peak �� of ff(�)g is close to the true peak u�

of f(u) (it is true when the sampling interval is small

enough), then the peak �̂ of ff̂(�)g will also be close to
u� with probability one. In fact, if it is not true, there
exists a positive constant � such that j�̂ �u�j � � holds
with a high probability. Yet another positive constant,
say 
, can be found such that f(u�) � f(�̂) � 
, since
f(u) is continuous and u� is the unique peak. On the
other hand, when the sampling interval is su�ciently
small, or equivalently when L is large, we have

0 � f(u�)� f(��) <



4
(14)

From the inequality (13) we may conclude that

�


4
� f̂(�) � f(�) � 


4
(15)

hold for each � with a high probability when L is large,
which also implies that

�


4
� f̂(�̂ )� f(��) � 


4
(16)

Hence, we may deduce that


 � f(u�)� f(�̂ )

< f(��) +



4
� f(�̂)

� f(��) +



4
� (f̂(�̂)� 


4
)

� 3


4
(17)

which is a contradiction. Therefore, the assertion that
the peak �̂ of ff̂(�)g will be close to u� with probability
one is validated.

4 EXPERIMENTATION & CONCLUSIONS

Extensive simulation tests had been carried out to
evaluate the performance of the proposed method for
time delay estimation. Comparison with the direct
cross correlator (CC), generalized cross correlator with
maximum likelihood pre�lters (GCC-ML) and SCOT
pre�lters (GCC-SCOT) were made. Cross correlation
with wavelet denoising using Donoho's soft threshold
[9] were also tried in order to contrast the two deci-
sion rules. In our experiments, the source signal was
given by (2) with wo = 160� and �(k) = 0. The enve-
lope a(k) had a value of 10 for time interval between
0 and 0.2, and 0 otherwise. The corrupting noise se-
quences n1(k) and n2(k) were white Gaussian processes
produced from a random number generator. The en-
ergy of s(k) was 10 and di�erent signal-to-noise ratios
(SNRs) were obtained by proper scaling of the noises.
The actual delay was assigned to 0.29296875. Prior to
wavelet transform of the received signals, each sample
was averaged with its adjacent samples in order to re-
duce noise power. In the wavelet denoising procedure,
4-tap Daubechies wavelet coe�cients were used and the
type I error � was set to 0.05. All results provided were
averages of 200 independent runs.

Figure 2 plots the mean square delay error versus
the sampling interval for di�erent methods at SNR =
�10 dB. In general, the accuracy of all �ve methods in-
creased as the sampling frequency increased. Although
it has been proved [9] that Donoho's soft-thresholding
method gives the best spatial adaptation and optimum
theoretical risk performance, the delay estimates ob-
tained using this threshold were less accurate than the
other four methods for the entire range of di�erent
sampling intervals. One reason might be due to the
fact that the constant threshold used, viz �

p
2 log(L),

was too large to keep all the pertinent signal infor-
mation. It can also be seen that the two generalized
cross correlators performed even worse than the direct
cross correlation method. It is because (i) the GCCs
were not optimum time delay estimators for determin-
istic signals and (ii) the pre�lter coe�cients computed
from the spectral estimates of the received signals had
fairly large variances. When the sampling interval was
smaller than 0.001, WD-CC with the new threshold
achieved the minimum delay error whereas CC was the
best delay estimator for other cases.

Figure 3 plots the variances of the �ve methods ver-
sus SNR with the sampling rate �xed at 2�11. As ex-
pected, the error of all techniques decreased as the SNR
increased. The WD-CC method with the new thresh-
old attained the best performance for all conditions.
The GCCs were less satisfactory than the CC method
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whilst the WD-CC with Donoho's threshold was the
poorest delay estimator among all the others.
In conclusion, an e�cient method based on wavelet

denoising is proposed for time delay estimation. Sim-
ilar to the generalized cross correlation approach, the
system consists of a pair of wavelet denoising units for
recovering the source signals, followed by a cross cor-
relator. A new thresholding rule for denoising is also
designed. It is demonstrated that the proposed method
generally gives a better delay estimation performance
over other correlation based techniques.
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Figure 1: System block diagram of WD-CC
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Figure 2: Mean square delay error vs sampling interval
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Figure 3: Mean square delay error vs SNR
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