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ABSTRACT In representing\/loloI by column vectors we are assuming that the

A new fast and accurate algorithm for tracking singular values, €ntire vector space and the signal subspace are also to be
singular vectors and the dimension of the signal subspace througFePresented as column vectors. Consequently the singular vectors
an overlapping sequence of data matrices is presented. Théhat are of interest are the left singular vectors. However, the
accuracy of the algorithm approaches that of the Prony-Lanczoshtire argument presented here, and the proposed algorithm,
(PL) method [1] with speed and accuracy superior to both thecould equally well be formulated in terms of row vectors, row
PAST and PASTd algorithms [2] for moderate to large size SPaces and right singular vectors.

problems. The algorithm is described for the special case ofwe further assume that the size of the data matrix is fixed, and
changes to two columns of the matrix prior to each update ofthat as new data vectors, become available, the older vectors
principal singular vectors and values. Comparisons of speed ancre removed to keep the row and column size constant. For
accuracy are made with the algorithms named above. example, ifm is a new column vector of observations of a

T (i . :
1. INTRODUCTION signal in noise that has just become available, then we might form
In this paper we introduce a new algorithm for efficiently tracking the next data matrid ,,,  as follows:
the principal singular values and the associated left (or right) Mpew = Shew™ Nnew (3a)
singular vectors of successive data matrices formed from
observations of a non-stationary signal in non-stationary noise. =
ry sig y Moew = [mz ms ... m(c+l)] (3b)

The ability to do this accurately and in real time is a critical

requirement of many signal processing applications in areas sucly,; gpiective is to track the ~ singular values and associated left
as radar, sonar, communications, pattern recognition, and speecly, . ,jar vectors of the signal matrix as it makes the transition

processing. In some of these applications, the component of th%m Sog 10°S in the presence of noise. For the sake of

H H TP » (0} new
data which we here are calling the “signal” may actually be non- o ‘we derive the procedure for performing this tracking for

stationary interference; and it's subspace may be tracked for thesingle column updates: but we note here that more general, multi-
purpose of suppressing that interference, rather than enhancing g ymn updates can be included. We also show how the results of
signal or estimating its parameters. this procedure can be used to update the estimated dimension of
Other algorithms exist which perform this function, and some arethe signal subspace.

discussed by Bin Yang in his paper on the PAST and PASTd 3 THEORETICAL DEVELOPMENT
:lc?rzggzzniz]ﬁel\:‘vegs oﬂ?p;rgovr\fhmnja:idh?;]ge?gljusztslt?t“;dwe develop the theory supporting the algorithm given below in

PASTd methods. The PL algorithm is chosen for its accuracy, anJWo steps. The first stgp Is to dgvelop a low rank marix _that 'S
the PAST and PASTd algorithms because they have been found tgppropnate for tracklr?g the smgular values_and left singular
be among the most computationally efficient [3]. veF:tors of a rar_ll&k IS|gnaI matrix measurgd in the presence Pf
noise. The matribA is a reduced rank version of the data matrix
2. STATEMENT OF THE PROBLEM Moy @nd although it achieves the desired fidelity for preserving
We begin by assuming the existence of a previously analyzed datgignal content, it will still have the same number of rows and
matrix M, ofr rows anc  columns, where the columns of the columns asv new - 1he major computational advantage is gained
matrix are column vectors of sequential (time or space) samplesn step two by constructing a smalier oy 1 ma®ix  which
of either real or complex data. We think M , as a matrix of is constructed to retain the desirable properties of
observations of a low rank (e.g. rakk ) signal magjy, , made Step One:

in th f a full rank noi . That is,. . . .
in the presence of a full rank noise matly, aris, We begin the theoretical development by initially assuming that

Moid = Soid * Noid @) we have obtained a sufficiently accurate approximation to the set
of k principal left singular vectors d1, ,  from a previous step
in the algorithm. We organize thege  orthonormal left singular
vectors into the columns of a mattix),,  as

Mo = [my my ... m] &) Uoig = [Ug U - 4] @

The columns oM od are represented here as by 1 data vector
m; so that we have a general representatiod &E as:



where the vectou, is the approximate left singular vector of r by c matrixA by anr bk+1 matriB , defined as follows:
Mg associated with the -th largest approximate singular value. H
The columns olU ;| are basis vectors for the signal subspace of B = [U old QJ EE = [Uold (]]F (12)

M _,,. In choosing these basis vectors for the signal subspace, we . . . . )
old 9 9 pace, where like terms are the same as in equation (7)Eand s defined

have also chosen an associated error va‘ﬂbqad , hamely the
squared Frobenius norm error in the approximatiogfy by
UidYoigMoig Which we represent as: E = |28 8 3¢y (13)
H 2 00..0 b
Eold = “Mold_UoIdUoldMold“F ®)

With the matrix F defined by equation (12), we compute the

Now, for the updated data matiik of equation (3b) we form singular values and left singular vectorsfof  as follows. First we
' new . .
a rank k+1 approximation matribA , with  rows and form the SVD of the matriF  as:

columns, in such a way that: H
y F=UZ Ve (14)
2
M . —AlZ<E (6)
Id . .
" new "F © The matrixB can then be written as:
That is, we require a matrid  that approximatds,,, at or
below the error valuef , which results from approximating H
old B:[ ]F=[ ]uzv 15
the columns ofM_,, by linear combinations of the columns of Yold 4 Yold 4 Vr>FVE (15)

U q- One matrix which meets this requirement is

The left singular vectors oB  are the same as the left singular

A= [Uold q] 883 - 8 J(c+1) @) vectors ofA and are computed as:
00..0 b

Uy = [U ]U 16

in which a; = Ufjqm, andm; is thg -th column ofly B~ [Foid 9"F (16)
and where the column vectgr  and the schlar are obtained by

decomposition of the new column vector, ;) of equation The k+1 singular values oB  are the same as khel

(3b) into two components; one in the column spacs g, and Principal singular values ok and are computed as:
one in the space orthogonalth,,; . These terms are computed S = z;/2 17)
as follows:
H In words, thek+1 singular values afz ~ and the associated
ac+1) = YodMc+1) ®) columns ofUg  will approximate thé&+1  principal singular
values and vectors clmnew . These approximations are computed
Z= My~ Yoig@c+1) 9) efficiently now because, givetd,, angl  from a previous
iteration, the only SVD required is that of the maffix , and the
b = |z (10) matrix F is only of sizek+1 byk+1 , wherk is typically a
small number in comparisonto  or
q=2zDb (11) 4. UPDATING THE PRINCIPAL SINGULAR VALUES AND

ASSOCIATED LEFT SINGULAR VECTORS

In short, the rationale for approximatirg ., By s this: if The basic steps of the updating portion of the FAST algorithm are

we are willing to accept the error resulting from a rank

i . ; : - summarized below. As noted above, the marix  kst+al by
approl>(|.mat|on to the matrit o 'na prlor step, then wg Sh‘?“'d k+1 matrix which is typically much smaller than the original
be willing to accept the error resulting from approximating data matrixM making an ordinary SVD adequate, from a

. L new ° ,
Mhew by A since it will be no greater. computational point of view, for many applications. However
Step Two: additional speed improvements may be had by optimizing or
Although we have constructed  to be a good rdnk1 replacing the SVD in this step (e.g. replace step (7) with a pruned

approximation toM ., . it is nevertheless still a matrix of PL computation). In the results described below the SVD of the
identical size. In the interest of reducing the amount of small matrixF has not been modified or optimized.
computations required for updatitg ,  we wish to work witha  Step (0) Initialize. First obtain an initial estimate of the
matrix of smaller size thakl new Therefore, we now replace the principal singular values and associated left singu-

lar vectors of the starting data mathk . One way

to do this is to compute the SVD M , and from



it extract the require& principal singular values and compare eacl; (including, ) to the threshold. The
and construct the matr“old as in equation (4). number of timesEi exceeds the threshold is the estimated
dimension of the signal subspace. This approach only requires a
threshold, estimates of the  principal singular values of the data
matrix from the tracking algorithm and the total energy in that

Step (1) Obtain the next data vecnm*r(C+ 1) , and com-
putea, = Uz'ldmi fori = 2,3 ...,(c+1) .

Step (2) Compute = M, 1y=Uggarcsq) - matrix.

Step (3) Computé = |4 . The required threshold may be set either theoretically from
knowledge or assumption about the power in the orthogonal

Step (4) Computg = z/b . complement subspace [4,5,6] or heuristically from estimates of
that power. However this is done, the threshold should be chosen

Step (5) Form the E matrix

E = a8z ... 8 a(c+1
0 0..0 b

large enough so that exceeding it indicates the presence of a
)1 signal with high probability.

If the procedure leading to equation (18) above indicates that the
signal dimension has increased since the last update of the

Step (6) Compute the matrk = EE" algorithm, and assuming that in the previous update we were
Step (7) Compute the SVD &F = UFZFVﬁ . tr_ackingk singular value§ and left singular vectors,. thekall
singular values and left singular vectors computed in steps (8) and
Step (8) UsingU,y q andp , update,, by replac- (9) of the previous section can be used to increase the number of
ing its columns with the principal singular vectors  singular values and vectors tracked by one. On the other hand, if
of Ug = [Uold q]UF. the procedure indicates that the signal dimension has decreased,

the number of singular values and vectors tracked can be
decreased by the indicated amount by simply retaining only the
largest singular values and their associated left singular vectors.
Thus the FAST algorithm can increase the number of dimensions

Step (9) Update the existing singular values by replacing
them with the square roots of the principal singu-
lar values ofz- .

Step (10) Update the data vectors, by setting tracked by one at each update, but can decrease that number by
m; < M4y i =1,2, ...,c and return to Step any amount.
@. 6. AN EXAMPLE
5 TRACKING CHANGES IN THE DIMENSION OF THE An example of the performance of this algorithm is given here,
SIGNAL SUBSPACE and a comparison is made with other well known algorithms such

In steps (8) and (9) of the algorithm we have left the number of 2 the Prony-Lanczos, _PAST and PASTd methods. ) In thls
example the two largest singular values of two complex sinusoids

singular values and associated left singular vectors that are being i .
o L . . In complex Gaussian noise are tracked.

updated unspecified. This is because in many practical

applications (e.g. speech, sonar, and radar) the dimension of théable 1 shows the parameters of this experiment. Figure 1 shows

signal subspace is constantly changing. Therefore, it is necessarife ability of two of the algorithms considered to track the largest

to both detect any change in signal subspace dimension, and tgingular value in a sequence of matrices over fifty updates. The

track the singular values and vectors through that change. PL method is not shown because on this scale its accuracy is

Our technique for determining the dimension of the signal virtually identical to the SVD. The PAST algorithm is not shown

subspace begins by computing the square of the Frobenius norrgffsussp\'g%'s IeXp?tL'mer":t_ its pezrforhmance. ls_lcomparsbl;a tot:]hat
of the data matrix. This is equal to the sum of all the squaredO € algonthm. Figure = shows simifar resufts for the

singular values of the data matrix, and thus gives a quick way Ofsecond largest singular value. Tables 2 and 3 summarize the

determining the total matrix energy. We now assume that we havéiccuracy results relative to a standard SVD for a run of 1000

already determined the dimension of the signal subspace and thgpdates using the parameters of Table 1. Table 4 summarizes the

. . . ._corresponding speed improvements of each algorithm over a
corresponding singular values and vectors for the previous matrix P 9 sp P 9

Mgyq- From the total matrix energy we subtract successively standard SVD computation. That is, the mean speed up refers to

larger sums of squares of the largest of these estimated singulatrhe average multiplicative speed up achieved by the indicated

values, until the difference lies below a chosen threshold value.algprlthm relative to performing a full SVD to estimate the
This event determines the estimated subspace dimension, and Vsa”able'
computed as follows. Let the total data matrix energy be given by
Ep = ||M||,2:,then fori = 1,2, ...,k compute
i N
E=IME- 5 0f= 3 of (9
j=1 jzi+1
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Figure 1: A comparison of the trace of the largest singu-
lar value computed by the SVD over 50 iterations vs. the
estimate of it from the various algorithms indicated.
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Figure 2: A comparison of the trace of the second largest

singular value computed by the SVD over 50 iterations vs.

the estimate of it from the various algorithms indicated.

Parameter Value
Normalized radian frequency 1 (constant) 21/ 3
Normalized radian frequency 2 (constant) 41/5
Noise standard deviation (real and imaginalry) 0.1
Number of rows oM 64
Number of columns oM 8
Number of singular values/vectors tracked 2
Beta value (for PASTd algorithm) 0.95

Table 1: Parameters Of Experiment

) Mean Standard
Algorithm Error Deviation
PL -0.07047 0.2386
PAST -5.581 7.283
PASTd -3.785 8.932
FAST -0.5896 0.8188

Table 2: Statistics For Largest Singular Value Estimate

Algorithm Mean Star)dz_;lrd
Error Deviation
PL -0.1848 1.038
PAST 7.124 4.988
PASTd 6.413 4.153
FAST 0.843 1.166

Table 3: Statistics For 2nd Largest Singular Value Estimate

Algorithm S;')veli?jnUp
PL 1.7553
PAST 1.7571
PASTd 1.7541
FAST 39.4356

Table 4: Speed Improvements Over A Standard SVD
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