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ABSTRACT

A new fast and accurate algorithm for tracking singular values,
singular vectors and the dimension of the signal subspace through
an overlapping sequence of data matrices is presented. The
accuracy of the algorithm approaches that of the Prony-Lanczos
(PL) method [1] with speed and accuracy superior to both the
PAST and PASTd algorithms [2] for moderate to large size
problems. The algorithm is described for the special case of
changes to two columns of the matrix prior to each update of
principal singular vectors and values. Comparisons of speed and
accuracy are made with the algorithms named above.

1. INTRODUCTION

In this paper we introduce a new algorithm for efficiently tracking
the principal singular values and the associated left (or right)
singular vectors of successive data matrices formed from
observations of a non-stationary signal in non-stationary noise.
The ability to do this accurately and in real time is a critical
requirement of many signal processing applications in areas such
as radar, sonar, communications, pattern recognition, and speech
processing. In some of these applications, the component of the
data which we here are calling the “signal” may actually be non-
stationary interference; and it’s subspace may be tracked for the
purpose of suppressing that interference, rather than enhancing a
signal or estimating its parameters.

Other algorithms exist which perform this function, and some are
discussed by Bin Yang in his paper on the PAST and PASTd
algorithms [2]. In this paper we make limited quantitative
comparisons between our algorithm, and the PL, PAST and
PASTd methods. The PL algorithm is chosen for its accuracy, and
the PAST and PASTd algorithms because they have been found to
be among the most computationally efficient [3].

2. STATEMENT OF THE PROBLEM

We begin by assuming the existence of a previously analyzed data
matrix  of  rows and  columns, where the columns of the
matrix are column vectors of sequential (time or space) samples
of either real or complex data. We think of  as a matrix of
observations of a low rank (e.g. rank ) signal matrix , made
in the presence of a full rank noise matrix . That is,.

The columns of  are represented here as  by 1 data vectors
 so that we have a general representation of  as:

In representing  by column vectors we are assuming that the
entire vector space and the signal subspace are also to be
represented as column vectors. Consequently the singular vectors
that are of interest are the left singular vectors. However, the
entire argument presented here, and the proposed algorithm,
could equally well be formulated in terms of row vectors, row
spaces and right singular vectors.

We further assume that the size of the data matrix is fixed, and
that as new data vectors  become available, the older vectors
are removed to keep the row and column size constant. For
example, if  is a new column vector of observations of a
signal in noise that has just become available, then we might form
the next data matrix  as follows:

Our objective is to track the  singular values and associated left
singular vectors of the signal matrix as it makes the transition
from  to  in the presence of noise. For the sake of
clarity, we derive the procedure for performing this tracking for
single column updates; but we note here that more general, multi-
column updates can be included. We also show how the results of
this procedure can be used to update the estimated dimension of
the signal subspace.

3. THEORETICAL DEVELOPMENT

We develop the theory supporting the algorithm given below in
two steps. The first step is to develop a low rank matrix  that is
appropriate for tracking the singular values and left singular
vectors of a rank  signal matrix measured in the presence of
noise. The matrix  is a reduced rank version of the data matrix

, and although it achieves the desired fidelity for preserving
signal content, it will still have the same number of rows and
columns as . The major computational advantage is gained
in step two by constructing a smaller  by  matrix  which
is constructed to retain the desirable properties of .

Step One:

We begin the theoretical development by initially assuming that
we have obtained a sufficiently accurate approximation to the set
of  principal left singular vectors of  from a previous step
in the algorithm. We organize these  orthonormal left singular
vectors into the columns of a matrix  as
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where the vector  is the approximate left singular vector of
 associated with the -th largest approximate singular value.

The columns of  are basis vectors for the signal subspace of
. In choosing these basis vectors for the signal subspace, we

have also chosen an associated error value, , namely the
squared Frobenius norm error in the approximation of  by

 which we represent as:

Now, for the updated data matrix  of equation (3b) we form
a rank  approximation matrix , with  rows and
columns, in such a way that:

That is, we require a matrix  that approximates  at or
below the error value, , which results from approximating
the columns of  by linear combinations of the columns of

. One matrix which meets this requirement is

in which  and  is the -th column of ,
and where the column vector  and the scalar  are obtained by
decomposition of the new column vector  of equation
(3b) into two components; one in the column space of  and
one in the space orthogonal to . These terms are computed
as follows:

In short, the rationale for approximating  by  is this: if
we are willing to accept the error resulting from a rank
approximation to the matrix  in a prior step, then we should
be willing to accept the error resulting from approximating

 by  since it will be no greater.

Step Two:

Although we have constructed  to be a good rank
approximation to , it is nevertheless still a matrix of
identical size. In the interest of reducing the amount of
computations required for updating  we wish to work with a
matrix of smaller size than . Therefore, we now replace the

 by  matrix  by an  by  matrix , defined as follows:

where like terms are the same as in equation (7), and  is defined
as:

With the matrix  defined by equation (12), we compute the
singular values and left singular vectors of  as follows. First we
form the SVD of the matrix  as:

The matrix  can then be written as:

The left singular vectors of  are the same as the left singular
vectors of  and are computed as:

The  singular values of  are the same as the
principal singular values of  and are computed as:

In words, the  singular values of  and the associated
columns of  will approximate the  principal singular
values and vectors of . These approximations are computed
efficiently now because, given  and  from a previous
iteration, the only SVD required is that of the matrix , and the
matrix  is only of size  by , where  is typically a
small number in comparison to  or .

4. UPDATING THE PRINCIPAL SINGULAR VALUES AND
ASSOCIATED LEFT SINGULAR VECTORS

The basic steps of the updating portion of the FAST algorithm are
summarized below. As noted above, the matrix  is a  by

 matrix which is typically much smaller than the original
data matrix , making an ordinary SVD adequate, from a
computational point of view, for many applications. However
additional speed improvements may be had by optimizing or
replacing the SVD in this step (e.g. replace step (7) with a pruned
PL computation). In the results described below the SVD of the
small matrix  has not been modified or optimized.

Step (0) Initialize. First obtain an initial estimate of the

principal singular values and associated left singu-

lar vectors of the starting data matrix . One way

to do this is to compute the SVD of , and from
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it extract the required  principal singular values

and construct the matrix  as in equation (4).

Step (1) Obtain the next data vector , and com-

pute  for .

Step (2) Compute .

Step (3) Compute .

Step (4) Compute .

Step (5) Form the E matrix

Step (6) Compute the matrix .

Step (7) Compute the SVD of .

Step (8) Using ,  and , update  by replac-

ing its columns with the principal singular vectors

of .

Step (9) Update the existing singular values by replacing

them with the square roots of the principal singu-

lar values of .

Step (10) Update the data vectors  by setting

,  and return to Step

(1).

5. TRACKING CHANGES IN THE DIMENSION OF THE
SIGNAL SUBSPACE

In steps (8) and (9) of the algorithm we have left the number of
singular values and associated left singular vectors that are being
updated unspecified. This is because in many practical
applications (e.g. speech, sonar, and radar) the dimension of the
signal subspace is constantly changing. Therefore, it is necessary
to both detect any change in signal subspace dimension, and to
track the singular values and vectors through that change.

Our technique for determining the dimension of the signal
subspace begins by computing the square of the Frobenius norm
of the data matrix. This is equal to the sum of all the squared
singular values of the data matrix, and thus gives a quick way of
determining the total matrix energy. We now assume that we have
already determined the dimension of the signal subspace and the
corresponding singular values and vectors for the previous matrix

. From the total matrix energy we subtract successively
larger sums of squares of the largest of these estimated singular
values, until the difference lies below a chosen threshold value.
This event determines the estimated subspace dimension, and is
computed as follows. Let the total data matrix energy be given by

, then for  compute

and compare each  (including ) to the threshold. The
number of times  exceeds the threshold is the estimated
dimension of the signal subspace. This approach only requires a
threshold, estimates of the  principal singular values of the data
matrix from the tracking algorithm and the total energy in that
matrix.

The required threshold may be set either theoretically from
knowledge or assumption about the power in the orthogonal
complement subspace [4,5,6] or heuristically from estimates of
that power. However this is done, the threshold should be chosen
large enough so that exceeding it indicates the presence of a
signal with high probability.

If the procedure leading to equation (18) above indicates that the
signal dimension has increased since the last update of the
algorithm, and assuming that in the previous update we were
tracking  singular values and left singular vectors, then all
singular values and left singular vectors computed in steps (8) and
(9) of the previous section can be used to increase the number of
singular values and vectors tracked by one. On the other hand, if
the procedure indicates that the signal dimension has decreased,
the number of singular values and vectors tracked can be
decreased by the indicated amount by simply retaining only the
largest singular values and their associated left singular vectors.
Thus the FAST algorithm can increase the number of dimensions
tracked by one at each update, but can decrease that number by
any amount.

6. AN EXAMPLE

An example of the performance of this algorithm is given here,
and a comparison is made with other well known algorithms such
as the Prony-Lanczos, PAST and PASTd methods. In this
example the two largest singular values of two complex sinusoids
in complex Gaussian noise are tracked.

Table 1 shows the parameters of this experiment. Figure 1 shows
the ability of two of the algorithms considered to track the largest
singular value in a sequence of matrices over fifty updates. The
PL method is not shown because on this scale its accuracy is
virtually identical to the SVD. The PAST algorithm is not shown
because in this experiment its performance is comparable to that
of the PASTd algorithm. Figure 2 shows similar results for the
second largest singular value. Tables 2 and 3 summarize the
accuracy results relative to a standard SVD for a run of 1000
updates using the parameters of Table 1. Table 4 summarizes the
corresponding speed improvements of each algorithm over a
standard SVD computation. That is, the mean speed up refers to
the average multiplicative speed up achieved by the indicated
algorithm relative to performing a full SVD to estimate the
variable.
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Parameter Value

Normalized radian frequency 1 (constant)

Normalized radian frequency 2 (constant)

Noise standard deviation (real and imaginary) 0.1

Number of rows of 64

Number of columns of 8

Number of singular values/vectors tracked 2

Beta value (for PASTd algorithm) 0.95

Table 1: Parameters Of Experiment
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Figure 1: A comparison of the trace of the largest singu-
lar value computed by the SVD over 50 iterations vs. the
estimate of it from the various algorithms indicated.
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Figure 2: A comparison of the trace of the second largest
singular value computed by the SVD over 50 iterations vs.
the estimate of it from the various algorithms indicated.
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Algorithm
Mean
Error

Standard
Deviation

PL -0.07047 0.2386

PAST -5.581 7.283

PASTd -3.785 8.932

FAST -0.5896 0.8188

Table 2: Statistics For Largest Singular Value Estimate

Algorithm
Mean
Error

Standard
Deviation

PL -0.1848 1.038

PAST 7.124 4.988

PASTd 6.413 4.153

FAST 0.843 1.166

Table 3: Statistics For 2nd Largest Singular Value Estimate

Algorithm
Mean

Speed Up

PL 1.7553

PAST 1.7571

PASTd 1.7541

FAST 39.4356

Table 4: Speed Improvements Over A Standard SVD


