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ABSTRACT

An e�cient scheme for implementing a search of

a likelihood function of known form at moderate

to high SNR is constructed. Often, the original

function to be searched is ill behaved with many

local extreme points. By projecting the signal onto

a subspace of replica waveforms we �rst �nd the

maximum of a related function that is more well

behaved, and then follow with a local search on

the original function. The approach builds on a

method of estimation of time delay of a narrow-

band signal [2], and it can be used to improve the

e�ciency of Fast Maximum Likelihood [3] estima-

tion.

1. SIGNAL MODEL

Let us assume that a vector of received data can be

modeled as a separable non-linear model corrupted

by additive noise:

y = s(�)b+ w (1)

The vector s is parameterized by a vector �. Both

� and b are assumed unknown but deterministic.

If w is zero mean complex white Gaussian noise,

the maximum likelihood estimate (MLE) of the

parameters is equivalent to

(a) solving the non-linear least squares prob-

lem.

�̂ = argmax jP (�)yj2 (2)

where P (�) = s(sHs)sH and represents

the projection onto the subspace< s(�) >.

(b) Then b is estimated by solving a linear

least squares problem with � = �̂.

The ML estimation of the vector � of the parame-

ter values can, therefore, be reduced to localization

of the global maximum of the multidimensional

function given by

JML(�) = jP (�)yj2 (3)

The implementation of the exact ML estima-

tion scheme involves a multidimensional search which

may not be practical in many circumstances.

A Fast Maximum Likelihood (FML) approach

was developed in [3] that signi�cantly reduced the

number of required computations by making use

of the known shape of the compressed likelihood

function of formula 2 for certain important signal

models (e.g., broad band HFM unknown delay and

stretch). The procedure developed in [3] consisted

of two primary steps:

1. localize the ridges of JML(�) on which

the global maximum is likely to be sit-

uated

2. search e�ciently for the global maxi-

mum along the localized ridges

Using the initial parameter estimates obtained

in step 2, a �ne-grid, Newton search or any other

suitable optimization procedure may be used to

get �nal estimates. The second step in this proce-

dure requires the "ridge" structure to have only a

single local maximum.

However, in some cases, the ridge itself may be

di�cult to search due to local minima. Therefore,



one may wish to replace it with a function that

has a similar maximum value, but is more eas-

ily searched. A general framework in which this is

done is by replacing each s(�), by a N�K matrix,

Q(�). Each element of ^JML(�) is now the magni-

tude of the projection onto a K dimensional sub-

space which spans the vector s(�), whereas each

element of JML(�) is the projection onto the one

dimensional vector s(�). Then each element of the

new function is computed as

^JML(�) = jP (�)xj2 (4)

where P (�) is the projection matrix onto a sub-

space of Q(�).

2. ILLUSTRATION OF METHOD

The method begins by replacing each s(�) with a

set columns that span the original. That is, for

each N � 1 vector s(�), we form a N �K matrix

Q(�) where s(�) is in the span of Q(�). The signal

model for this related problem is given as

ŷ = Q(�)b+ w (5)

The elements of the new function are then com-

puted as

^JML(�) = xHQ(�)(Q(�)HQ(�))�1Q(�)Hx (6)

where Q(�) is chosen such that ^JML(�) has a

maximum value close to that of JML(�). For the

purpose of implementation, the columns of Q(�)

could be orthogonalized and ^JMLm can be calcu-

lated as the sum of inner products.

Figure 1 shows a geometrical interpretation where

the received signal vector is being projected onto

a two dimensional subspace that contains the one

dimensional matching vector. To obtain the sub-

space projection, one could add the inner products

with the orthogonal X and Y axes.

An illustrative example is given by the esti-

mation of a time delay for a real sinusoidal burst

signal given an N sample receive vector . Each

matching vector s(�) would be a delayed sinusoidal

Matching
Vector

s

Subspace

Recieved
Vector

Z

X

Y

Q

Figure 1: Projection Subspace

burst.

s(�) =

2
66664

p1;� sin(T � �)

p2;� sin(2T � �)
...

pN;� sin(NT � �)

3
77775

(7)

where p(nT��) � pn;� is a sampled pulse function

and T is the sampling interval. The autocorrela-

tion function for this waveform is shown in Fig-

ure 2. The oscillations caused by the phase would

make this function extremely di�cult to search.

Instead, for each vector s we form a matrix which

consist of both a delayed cosine and sine burst and

project onto this subspace.

Q(�) =

2
66664

p1;� sin(T � �) p1;� cos(T � �)

p2;� sin(2T � �) p2;� cos(2T � �)
...

...

pN;� sin(NT � �) pN;� cos(NT � �)

3
77775

(8)

The result of this operation is shown in Figure 3.

This can more easily be searched for an approxi-

mation to the peak and then the original autocor-

relation can be searched using the previous result

as a starting point.

3. BLOCK LINEAR CHIRP

In this section we seek to extend this FML ap-

proach to a problem with a compressed likelihood
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Figure 3: Subspace Projection

function that is not as well behaved. The sig-

nal considered is a linear stepped FM consisting

of 16 contiguous complex sinusoids each with a

distinct frequency. A time-frequency representa-

tion of this signal is given in Figure 4. The signal

model 1 again applies with � = (c; tdelay), where

c = doppler stretch and tdelay is time delay.
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Figure 4: Waveform

The likelihood function for this signal model

has a complex structure with a the loci of param-

eter values corresponding to the local ridge peak as

shown in the left side trace in Figure 5. The corre-

sponding maximum values along the ridge for the

left trace of Figure 5 are shown by the dashed line

in Figure 6. Because of the large number of lo-

cal maxima this ridge function may not be easily

searched and Step 2 of the FML procedure can-

not be implemented in a numerically e�cient way.

The trace on the right of Figure 5 is from the sub-

space projection function discussed later.
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Following the discussion in Section 2 a modi-

�ed likelihood function is developed by considering

s(�) to be embedded in a larger space spanned by

s1(�),s2(�),s3(�),and s4(�). Here s1,...s4 repre-

sent the 4 linear blocks of the signal. Thus rather

than computing the projection on s(�) directly we

consider the modi�ed likelihood function, in which

we project on a subspace containing s(�):

^JML(�) = jPQ(�)yj2 (9)

where PQ(�) = Q(�)(Q(�)HQ(�))Q(�)H and Q(�)

is the 4 column matrix

Q =
h
s1 s2 s3 s4

i
(10)

Since the blocks do not overlap in time, they

are orthogonal and the projection operation can

be performed as a non-coherent addition, that is:



^JML(�) = jP1(�)xj2 + jP2(�)xj2 (11)

+ jP3(�)xj2 + jP4(�)xj2

where P1(�) = s1(�)(s1(�)Hs1(�))s1(�)H etc.

This function is well-behaved and has the ridge

structure shown in Figure 5 with the correspond-

ing values shown as the solid line in Figure 6 . The

absence of strong local maxima make this function

a suitable candidate for the FML procedure.

Using this modi�ed likelihood function the per-

formance of the proposed FML estimation approach

was evaluated. Step 2 of the FML procedure, the

search along the ridge to obtain an initial estimate,

was performed using a golden sections search pro-

cedure. This procedure has the advantage of not

requiring derivatives and of accommodating the

small ripples present in the ridge of the modi�ed

likelihood function. The mean-squared error per-

formance of the proposed estimator through this

initial stage is shown in Figure 7 for the delay at

various SNRs. The results are based on 400 inde-

pendent trials.
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Figure 7: MSE of Initial Estimate

From these initial estimates �nal estimates are

obtained using a �ne-grid or Newton search us-

ing the original, unmodi�ed likelihood function,

JML(�). The unmodi�ed likelihood function of-

fers better parameter resolution once a reasonable

initial estimate is available. If Newton search is

used for the �nal estimates, it may be necessary

to start a few searches to insure that the �rst esti-

mate was within the region of convergence of the

global maxima. Starting points for any additional

searches are chosen with knowledge of the likeli-

hood function shape.

4. SUMMARY

We have presented a general framework which can

be used to �nd a maximum in cases where a stan-

dard search method may be impractical and the

shape of the function is known. By projecting onto

a larger subspace, the function can be more e�-

ciently searched. The result of this search can be

used as a seed for a localized search on the original

function.
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