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ABSTRACT

POL-SAR data acquired from the two 1994 
ights of
the SIR-C/X-SAR platform has illustrated the variability
of measurements due to seasonal, spectral, and angular
changes. Consequently, statistical techniques for terrain
classi�cation make robust, unsupervised classi�cation prob-
lematic. We present an algorithm for classifying terrain
that accounts for variability in terrain signatures by deriv-
ing a single representative process for each terrain from a
family of stochastic scattering models. A best-basis search
through a wavelet packet tree, using the Bhattacharyya co-
e�cient as a cost measure, determines the optimal unitary
basis of eigenvectors for the representative process and of-
fers a scale-based interpretation of the scattering phenom-
ena. The associated eigenvalues and means are determined
through iterative algorithms. The technique is illustrated
with a simple example.

1. INTRODUCTION

One useful application for data collected from polarimetric
synthetic aperture radar (POL-SAR) platforms is the clas-
si�cation of vegetated terrain. The basis for classi�cation
rests on the fact that di�erent terrains (e.g., forest, desert,
bodies of water) scatter incident radar signals di�erently,
but predictably. The statistics of the scattering re
ect the
underlying phenomonology and serve as a \signature" for
that terrain. Classifying a scene imaged by a POL-SAR
platform requires knowledge of the scattering statistics for
every category of terrain and a decision test that uses the
signatures to select the terrain best described by the input
data. Recent e�orts at terrain classi�cation using POL-
SAR data [1, 2, 3] have made signi�cant progress in classi-
fying vegetated terrains using statistical methods.
The phenomonology described by the statistics belonging

to a terrain, however, is not invariant. Factors such as
the incidence angle of the platform, atmospheric e�ects,
and seasonal changes lead to di�erent statistical models
for the same terrain. The net result is that the design
of an optimal classi�cation test for a speci�c terrain type
becomes problematic, due to blurred signatures.
POL-SAR data of the Earth was collected in 1994 from

the SIR-C platform [4] aboard the space shuttle at two fre-
quencies, 1250 MHz (L-band) and 5300 MHz (C-band) dur-
ing two ten-day 
ights in April and September/October of
1994. Measurements were collected during the second mis-
sion at numerous incidence angles providing multiple obser-
vations of the same terrain. The by-product of temporal,
spectral, and angular variation is a family of statistics that
each re
ect a unique radar-terrain phenomenology. Recent
e�orts at terrain classi�cation [5] have acknowledged the
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e�ect of temporal changes in terrain statistics, but no com-
prehensive algorithm for robust classi�cation exists at this
time.
In this paper we develop a framework for robust terrain

classi�cation that creates a single representative statistical
description of a terrain from a family of empirically-derived
statistics. Wavelet packet bases serve as building blocks for
the representative description. The advantage of such a
classi�er is the ability to correctly categorize terrain even
when its scattering statistics have migrated from the orig-
inal signature, while at the same time minimizing the di-
mensionality of the algorithm. This 
exibility permits the
algorithm to operate on a broader spectrum of input data
than less robust algorithms that require frequent supervi-
sion.

2. PROBLEM FORMULATION

The scattering statistics of a terrain are frequently orga-
nized in a polarization covariance matrix (PCM), which
relates the four channels of co-polar and cross-polar radar
returns, X = [xHH xHV xV H xV V ]; recorded in each reso-
lution cell. A terrain covariance matrix (TCM) is a spatial
extension of a PCM that relates four-channel data from one
or more resolution cells. For example, a TCM, K, for four
channels of POL-SAR data obtained from two adjacent cells
is de�ned as:

K = Ef(X � �
X
)(X � �

X
)
H
g (1)

with �
X

being the mean vector for X, which is

X = [ X(1) X(2) ]
H

(2)

where

X(1) = [ xHH(1) xHV (1) xV H(1) xV V (1) ] (3)

X(2) = [ xHH(2) xHV (2) xV H(2) xV V (2) ] :(4)

We construct a representative process from a family of
processes by maximizing a scalar measure of similarity, the
Bhattacharyya coe�cient, between the representative pro-
cess and each mean vector and covariance matrix in the
family of terrain descriptions. The result is a wavelet-based
process which maximizes an aggregate measure of stochas-
tic distance. The wavelet-based TCM is constructed by
inserting the eigendecomposition of its covariance matrix,
as well as that of the original processes, into the analytic
expression for the sum of the individual Bhattacharyya co-
e�cients. Consequently, the maximization reduces to the
optimization of the two de�ning quantities of the wavelet-
based TCM: its unitary matrix of eigenvectors and the as-
sociated eigenvalues. The unitary matrix containing the
eigenvectors is one of any orthonormal wavelet packet bases
derived from a tree spawned by a single mother wavelet, and
the eigenvalues are any set of acceptable values satisfying an



overall power constraint. Finally, the representative mean
vector is derived in a subsequent optimization utilizing the
representative TCM.
Once representative processes are constructed for each

target terrain, they are inserted into a decision test that
classi�es radar data on a pixel-by-pixel basis.

3. MATHEMATICAL FOUNDATIONS

For two equally probable, real-valued, N -dimensional,
Gaussian processes, N(m1;�1) and N(m2;�2), the Bhat-
tacharyya coe�cient, �, is given by [6]:

�(m1;�1;m2;�2) = e
��
: (5)

Letting �m = m1 �m2, � is de�ned by:

� =
1

8
(�m)

H
[
�1 +�2

2
]
�1
(�m) +

1

2
ln

j
�1+�2

2
jp

j �1 jj �2 j
: (6)

�must necessarily be between 0 and 1, and a higher value of
� indicates increasing similarity between the two processes.
Consider a set, (m;�), of Q equally probable, real-

valued, N -dimensional, Gaussian, stochastic processes:

(m;�) = f(m1;�1); (m2;�2); : : : ; (mQ;�Q)g: (7)

Let (m̂; �̂) be the wavelet-based process that represents the
means and TCMs in (m;�). The members of (m;�) can be
thought to represent the multiple descriptions of the same
terrain whose statistics have been perceived di�erently due
to a change in observation or a change in the underlying
behavior of the original process.
If the pairwise Bhattacharyya co-

e�cient, �(mi;�i; m̂; �̂), indicates the similarity between

(mi;�i) and (m̂; �̂), then

�(m;�; m̂; �̂) =
1

Q

QX
i=1

�(mi;�i; m̂; �̂) (8)

represents the overall measure of similarity to be maxi-
mized.

4. THE MATCHING ALGORITHM

In [7], an algorithm is presented for optimally matching a
Gaussian, wavelet-based process to one arbitrary process
when the means of both processes are equal. The algo-
rithm is extended here to match a wavelet-based process to
a family of Q processes when the means are unequal. The
task is addressed by �rst assuming the means are all equal

in order to �nd a wavelet-based �̂ to match �1; : : : ;�Q,
and then �nding an optimal m̂ based on this result.

4.1. Equal Means: A Simpler Optimization

�̂ can be expanded into an eigendecomposition:

�̂ = Û � Ŝ � Û
H

(9)

and, for 1 � i � Q, similarly for �i:

�i = Ui � Si � U
H
i (10)

where Ŝ and Si are diagonal matrices and Û and Ui are
unitary matrices.
Substituting the eigendecompositions from (9) and (10)

into (8) yields:

�(�; �̂) = 2
�

N

2

QX
i=1

j Ŝ j
1

4 j Si j
1

4 j Ŝ + Û
H
�iÛ j

�

1

2 : (11)

Letting 
(�; �̂) = ( 1

�(�;�̂)
)2 and retaining only relevant

terms,


(�; �̂) =j Ŝ j
�

1

2
1

(
PQ

i=1
j Si j

1

4 j Ŝ + ÛH�iÛ j�
1

2 )2
: (12)

The expression for 
(�; �̂) in (12) is the expression to mini-

mize with respect to Û and Ŝ that will result in maximizing

�(�; �̂).

The minimization of 
(�; �̂) with respect to Û and Ŝ
can be viewed as the combination of two independent algo-

rithms: 1) the minimization of 
(�; �̂) with respect to Ŝ

when Û is �xed, and 2) the minimization of 
(�; �̂) with

respect to Û when Ŝ is �xed.

4.2. Optimal Eigenvalues: Fixed-Point Algorithm

Consider the constrained problem of minimizing 
(�; �̂)

when a unitary basis matrix, Û , has been �xed. What re-

mains is to �nd the matrix, Ŝ that contains the eigenvalues,

g1; : : : ; gN , for the wavelet-based process, �̂, that maximize


(�; �̂), subject to the constraint g1 + g2 + : : : + gN = P ,
where P is the average trace of the matrices, �1; : : : ;�Q.

In (12), let G =j Ŝ j
�

1

2 , and allow V to be:

V =
1

(
PQ

j=1
j Sj j

1

4 j V j j�
1

2 )2
(13)

where
V
j
= Ŝ + Û

H
�j Û : (14)

Then, partial derivatives of 
(�; �̂) may be taken with re-
spect to gi and set equal to zero:

@


@gi
=

@G

@gi
V +G

@V

@gi
(15)
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1
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�

3

2

(
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1

4 j V k j
�

1

2 )3
(16)

= 0; (17)

where j V j
jii represents the i-th principal minor of j V j

j.
Rearranging (15)-(17) yields:

gi =
z

zi
(18)

where

z =

QX
j=1

j Sj j
1

4 j V
j
j
�

1

2 (19)

zi = 2

QX
k=1

j Sk j
1

4
j V k

jii

j V k j
3

2

: (20)

Both z and zi, i = 1; : : : ; N , are functions of g1; : : : ; gN .
The expression in (18) is a �xed-point algorithm for gi,
i = 1; : : : ; N: Letting (�)n denote the n-th iteration value,

and inserting a normalizing constant, pn�1, to enforce the
power constraint on the eigenvalues, the expression in (18)
can be rewritten in vector form as:

2
4

gn1
...
gnN

3
5 = p

n�1
z
n�1

2
664

1

z
n�1

1

...
1

z
n�1

N

3
775 : (21)
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Figure 1. The wavelet packet tree

The matrix expression in (21) may be iterated to yield

values for gi, i = 1; : : : ; N , and hence, Ŝ, that minimize


(�; �̂) when Û is �xed.

4.3. Optimal Eigenvectors: Basis Migration Algo-
rithm

Alternately, minimizing 
(�; �̂) when Ŝ is �xed requires

a technique to �nd the unitary matrix, Û , from a wavelet
packet tree, such as the one in Figure 1. The Bhattacharyya
coe�cient, unfortunately, is not an additive cost function
[8], i.e., the branches of the wavelet packet tree cannot be
pruned independently and still lead to an optimum solution.
An alternative is to pick an initial basis and allow its vectors
to \migrate" up and down the branches of the tree until it

arrives at a new basis which minimizes 
(�; �̂).
For i = 1; : : : ; N , let

X
i
= U

H
i (Û

0
ŜÛ

0H
)Ui + Si: (22)

The equation for 
(�; �̂) in (12) can be rewritten as:



0
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1
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(
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(23)

where, without sacri�cing generality, assume Û0, the initial
choice for the unitary basis, is populated by the vectors at
the bottom scale of the wavelet packet tree in Figure 1:

Û
0
=
�
 01  02 j  03  04 j � � � j  0N�1  0N

�
: (24)

Consider the migration of Û0 to Û1 as pictured in Figure

1 so that Û1 is de�ned as:

Û
1
=
�
 1

0
 2

0
j  03  04 j � � � j  0N�1  0N

�
:

(25)

The change in 
0(�; �̂), �
0(�; �̂), can be shown to be
approximately:

�

0
(�; �̂) =

NX
i=1

�i
@
0(�; �̂)

@�i
(26)

where

�i =

NX
k;l=1

�i(k; l)ri(k; l) (27)
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H
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If �
0(�; �̂) > 0, then the migration increases 
0(�; �̂)
and necessarily decreases the similarity between the pro-

cesses. If �
0(�; �̂) < 0 then the new basis will result in
a wavelet-based process that is closer to the family of pro-
cesses in �, and the migration is justi�ed. This procedure
is repeated for each group of vectors in the basis. Migra-
tion of vectors to another scale only occurs if its impact is

to decrease 
0(�; �̂).

4.4. Optimal Mean Vector

Having determined �̂, m̂ can be found to maximize (8). It
can be shown that m̂ may be determined from a �xed-point
algorithm having the form of:

m̂
n

= [

QX
i=1

�(mi;�i; m̂
n�1

; �̂)(
�i + �̂

2
)
�1
]
�1

�

[

QX
i=1

�(mi;�i; m̂
n�1

; �̂)(
�i + �̂

2
)
�1
mi]: (31)

It has been found that a good starting point for m̂ is the
average value of m1; : : : ;mQ.

4.5. The Complete Algorithm

The integration of the algorithms presented in Section 4.2.
and 4.3. is discussed in [7]. The algorithm presented in
Section 4.4. permits processes with unequal means to be
matched. Together, the complete algorithm constructs a
wavelet-based process that is matched in the Bhattacharyya
sense to a family of Q means and covariances.

5. APPLICATIONS TO SIR-C DATA

To test the ability of the algorithm to robustly classify ter-
rain across images, two sets of images were analyzed with
the objective of designing a single classi�er that satisfac-
torily categorizes terrains in both sets. The images were
collected from the Alaskan boreal forests during the 1994
space shuttle missions. The �rst set consists of HH, HV ,
and V V images obtained at L-band. The second set con-
sists of HH, HV , and V V images at P-band that have been
co-registered with the �rst set. An area of the images that
clearly reveals the perimeters of two abutting terrains, T1
and T2, was isolated and is shown in Figure 2.
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Figure 2. (a) L-band HH image of T1 and T2 (b)
P-band HH image of T1 and T2.

A length-8 vector, r, was de�ned around the neighbor-
hood of a central pixel to capture both spatial and po-
larimetric information at each frequency. If, for example,



LHH(x; y) represents the value of the (x; y) pixel in theHH
image captured at L-band, then

r =

2
6666664

LHH(x; y)
LHV (x; y)

LHH(x; y � 1)
LHV (x; y � 1)
LHH(x; y + 1)
LHV (x; y + 1)
LV V (x� 1; y)
LV V (x+ 1; y)

3
7777775
: (32)

Mean and covariance information for r was compiled for
T1 and T2 at each frequency.

(LHH ; LHV ; LV V ) ! (mL;T1 ;�L;T1 ;mL;T2 ;�L;T2)(33)

(PHH ; PHV ; PV V ) ! (mP;T1 ;�P;T1 ;mP;T2 ;�P;T2) (34)

Using the quantities in (33) and (34), optimal Bayes classi-
�ers were implemented for each frequency with the assump-
tion of equal priors for T1 and T2. The classi�ers were ap-
plied, pixel-by-pixel, to both sets of images to demonstrate
their performance when matched, and then mismatched, to
the input data set. Figure 3 illustrates the results.
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Figure 3. Classi�cation results: (a) L-band data
with L-band classi�er (b) P-band data with P-band
classi�er (c) L-band data with P-band classi�er (d)
P-band data with L-band classi�er.

Using the mean and covariance information in (33) and
(34), representative statistics were generated for both T1
and T2 using the algorithm described in Section 4.

(mL;T1 ;�L;T1 ;mP;T1 ;�P;T1) ! (m̂T1 ; �̂T1) (35)

(mL;T2 ;�L;T2 ;mP;T2 ;�P;T2) ! (m̂T2 ; �̂T2 ) (36)

The quantities in (35) and (36) were used to design an
optimal Bayes classi�er which was applied to both sets of
images. Figure 4 illustrates the performance of the wavelet-
based classi�er. As expected, the classi�er yields perfor-
mance superior to the mismatched scenarios documented
in Figure 3(c) and 3(d), but not on par with the matched
results in Figure 3(a) and 3(b). Using the matched classi�er
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Figure 4. Classi�cation results using optimal classi-
�er constructed from representative statistics: (a)
L-band data set (b) P-band data set.

outputs as paradigms, the wavelet-based classi�er yielded
4127 misclassi�cations out of 40000 pixels compared to 6166
for the mismatched classi�er on the L-band data, and for
the P-band data, 4838 misclassi�cations compared to 8952.
The performance of the wavelet-based classi�er can be im-
proved by locally adapting the prior values for T1 and T2
based on neighboring classi�cation results, and assembling
mean and covariance statistics for each region from dis-
parate locations within the perimeter.

6. CONCLUSION

The results of the experiment in Section 5. demonstrate
the feasibility of constructing robust classi�ers that oper-
ate satisfactorily across families of images with little su-
pervision and retraining. Future work will concentrate on
classi�cation algorithms that operate on several classes of
terrain, integrating ground truth into the analysis. Finally,
the wavelet packet representation of the terrain covariance
matrices will be investigated to build a classi�er that takes
advantage of its unique scale-space localization properties.
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