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ABSTRACT

The refraction of over-the-horizon skywave radar signals
by the ionosphere facilitates wide-area surveillance. While
current systems measure target ground range, azimuth,
and velocity they do not estimate target altitude, which
is important for classi�cation purposes. In this paper, a
method akin to matched-�eld processing in underwater
acoustics is proposed for target height-�nding. The ap-
proach exploits the delay-Doppler di�erences between di-
rect and surface-re
ected multipath returns from the tar-
get. In particular, the coherent sum of these multipath re-
turns can be matched in the complex delay-Doppler space
for a single dwell to estimate target altitude, ground range,
and radial velocity. In this paper, a maximum likelihood
estimate (MLE) of these target coordinates is developed
without requiring knowledge of the target backscatter re-

ection coe�cients. The performance of the MLE is eval-
uated through simulation for an uncertain quasi-parabolic
ionosphere and compared to the Cramer-Rao lower bound
(CRLB).

INTRODUCTION

Over-the-horizon (OTH) radar takes advantage of the re-
fractive properties of the ionosphere to detect and locate
targets at long ranges. An advantage that OTH radar ex-
hibits over conventional line-of-sight radar is the surveil-
lance range of the OTH radar system is not limited by the
horizon and terrain [1]. Many signal processing methods
for OTH radar concentrate on determining target ground
range, azimuth, and velocity by comparing measured delay
times of re
ected radar signals to delay times predicted by
an ionospheric propagation model [2, 3, 4], but are unable
to estimate target altitude. In this paper, target height
�nding for OTH high frequency (HF) radar is approached
as a matched �eld processing (MFP) problem to extract
target ground range, altitude, and radial velocity.
In underwater acoustics, MFP is applied for source range

and depth localization by matching sensor outputs to the
predictions by full �eld models which incorporate coher-
ent multipath propagation [5]. MFP has also been applied
to low angle line-of-sight radar for height �nding in the
presence of specular multipath re
ections from the ground
surface [6]. In this paper, MFP is applied after beam-
forming in complex delay-Doppler space on a single dwell.
The signal model used incorporates the coherent specular
multipath re
ections from the ground as well as refractive
propagation through a vertically varying ionosphere.
The scenario considered includes an uncertain multipath

environment in which a target is illuminated by a direct
path ray and a single ground re
ected ray. For the case of
no magnetic �eld and co-located transmitter and receiver,
the complex delay-Doppler surface for this scenario consists
of the returns due to the three possible transmit/receive
ray combinations.

1. DELAY-DOPPLER PROCESSING IN A

MULTIPATH ENVIRONMENT

The multipath scenario considered in this paper is illus-
trated in �gure 1. The transmitted signal is a coherent
burst of waveforms denoted by u(t) where a single wave-
form is represented by up(t). The length of each wave-
form is T and the waveform repetition frequency (WRF)
is fw = 1

T
. There are M waveforms transmitted, so the

length of the signal, or coherent integration time (CIT) is
Tc =MT .
The radar return contains contributions from the direct

ray and single surface re
ection ray, so for the monostatic
case three signal paths are possible. Assume the transmit-
ted signal is re
ected o� of a target with ground range r,
altitude z, and radial velocity v. The \two-way" group
delay, phase delay, and Doppler shift for path l are repre-
sented by �gl , �pl , and !dl , respectively and are functions

of the target parameters � = [r z v]T as well as the en-
vironment, which is parameterized by �. In this paper
a quasi-parabolic ionosphere model is used so � consists
of the critical frequency, layer height, and layer thickness.
Letting �(t) represent additive noise, the received signal
including multipath for an operating frequency !0 is

sr(t) =

LX
l=1

�lu(t� �gl)e
|(!0+!dl

)(t��pl ) + �(t) (1)

where �l includes the unknown target re
ection coe�cient
for the lth multipath return and, for the scenario consid-
ered here, the number of paths L = 3. Operating at a
wavelength �0, the Doppler shift is

!dl = 2�
vt (cos �li + cos �lr )

�0
(2)

where �li and �lr are the incident and re
ected ray angles,
respectively, along path l.
Delay processing is accomplished by matched-�ltering

the received signal with the transmitted waveform. The
received signal is sampled at intervals of Ts seconds. By as-
suming that the sidelobes of the waveform ambiguity func-
tion �(�; !) from neighboring waveforms are negligible, the
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Figure 1. Surface re
ection multipath transmis-

sion/re
ection scenario.

discrete time data representation can be written as

x[m;n] �

LX
l=1

�le
| l�(nTs � �gl ; !dl)e

|!dl
mT + �m(nTs)

(3)
where n is the sample index within one waveform repetition
interval (WRI) and m is the WRI index. Taking a K-point
DFT over m yields

X[k; n] = (4)

LX
l=1

�le
| l�(nTs � �gl ; !dl)P

�
!dlT �

2�k

K

�
+ nk(nTs)

where

P (k) = e
|1
2
k(M�1)

sin
�
kM

2

�
sin

�
k 1
2

� (5)

and nk(t) is the DFT of �m(t) taken across WRI's. Note
that in (4) the peaks due to the multipath returns from di-
rect and surface re
ected paths are typically unresolved in
magnitude but do have a characteristic pattern in complex
delay-Doppler space.
To incorporate the delay-Doppler surface into a data vec-

tor, the samples from aM�N subset of the surface X[k;n]
are reordered into the MN � 1 vector x where the model
can be written as

x = A(�;�)a+ n (6)

where the (nM + k; l)th element of A(�;�) is

fA(�;�)gnK+k;l = �(nTs��gl; !dl)P (!dlT �
2�k

K
); (7)

a is the L� 1 vector of complex re
ection coe�cients, and
n is the noise vector. Because a depends on the physical
characteristics of the target, it is assumed to be unknown.

2. MAXIMUM LIKELIHOOD ESTIMATION

OF TARGET LOCATION

In this section, the maximum likelihood estimate for tar-
get ground range and altitude is derived. The target pa-
rameters � and the re
ection coe�cients a are considered
as non-random unknowns. The environment � is random
with a distribution determined from soundings and histor-
ical measurements.
The Maximum Likelihood estimate (MLE) of the target

location is determined by maximizing the joint likelihood
function of �, �, and a. Assuming the noise is Gaussian

distributed with zero mean and covariance Q, and the en-
vironment parameters are also Gaussian distributed with
mean m� and covariance C�, the log-likelihood function
can be written as

L(�;�;a; x) = L0 + Lx + L� (8)

where

Lx = �(x� s)HQ�1(x� s)

L� = �(��m�)
H
C
�1
� (��m�)

and L0 = � log
h
�N (2�)

M
2 jQjjC�j

1

2

i
is a constant term.

Note that the term Lx is a function of the match between
the model and the observation while L� is a measure of
the a priori information of the environment. An estimate
of the target parameters is made by maximizing the log-
likelihood function

�̂ML = arg max
�

�
max
�

max
a

[L(�;�;a; x)]

�
(9)

which, by using the model in (6) gives the result

�̂ML = argmax
�

�
max
�

h
�
�
P
?

Ax

�H
Q
�1
�
P
?

Ax

�
� L�

i�
(10)

whereP?A = I�A
�
A
H
Q
�1
A

�
�1
A
H
Q
�1. For cases where

a complex electromagnetic propagation model is consid-
ered, the maximization over � and � in (10) can be im-
plemented numerically. An alternative to maximizing (10)
is to maximize the marginal density function by integrat-
ing the joint distribution over the random parameters, �.
Since the log-likelihood function in (8) is smooth, however
a more computationally e�cient gradient based optimiza-
tion algorithm can be used to perform the maximization of
(10) whereas integration techniques for the marginal den-
sity calculation are typically computationally intensive.
In this paper (10) is maximized by employing the New-

ton method of descent which entails calculation of the gra-
dient and Hessian matrix of the multidimensional likeli-
hood function. For maximization of a smooth and uni-
modal function, as is the case here, the Newton method
provides rapid convergence.

3. CRAMER-RAO LOWER BOUND

In this section, the Cramer-Rao Lower Bound (CRLB) for
the electromagnetic matched �eld processing application
described in this paper is brie
y summarized. For a more
complete treatment of the CRLB, the reader is referred to
[7] and [8].
For this paper, the 12� 1 unknown parameter vector is

	
T = [rt zt vt Re fag

T Im fag
T
�
T ]. When there is no a

priori information on the parameters, the elements of the
12� 12 Fisher information matrix (FIM) J are

fJg
ij
= E

�
�

@2

@ i@ j
ln f

�;a
(xj�)

�
(11)

where the expectation is taken over x. Using the model
from (6), the elements of the FIM are

fJg
ij
= 2 Re

�
@sH (	)

@ i
Q
�1 @s(	)

@ j

�
: (12)
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matrix J�� is the FIM for the nonrandom parameters when
the ionospheric parameters are known.
For the case where the a priori distribution of the envi-

ronment parameters is known, the hybrid CRLB is used as
a bound on estimation performance [7]. In this case, the
FIM is

J = J1 + J2 (14)

where J1 = E [J] with J from (11) and the expectation
taken over � as well as x. J2 includes the a priori infor-
mation,

fJ2gij = E

�
�

@2

@ i@ j
ln f(�)

�
: (15)

Assuming the environment parameters are Gaussian dis-
tributed with mean m� and covariance C�, then

J2 =

"
0 0

0 C
�1
�

#
(16)

which decreases the CRLB as the variance of ionospheric
parameters decreases.

4. NUMERICAL SIMULATIONS

To compare the MLE processor with the CRLB, the
bounds are determined by numerically computing the
derivatives in (12) with �nite di�erences. The perfor-
mance for the estimator in (10) is illustrated by performing
Monte Carlo simulations as a function of signal-to-noise ra-
tio (SNR) and bandwidth (BW).
A quasi-parabolic (QP) propagation model [9] is com-

bined with the delay-Doppler model by using an eigenray
�nder to calculate group delay and Doppler shift between a
transmitter and target as a function of target ground range
and altitude. Environmental uncertainty is introduced by
considering the critical frequency, layer height, and layer
thickness of the QP model as random variables, so the vec-
tor of random parameters is � = [fc hm ym]

T . The pro-
�le statistics, m� and C� are estimated from scaled verti-
cal ionogram measurements taken at Wallops Island. The
amount of environment variability is controlled by scaling
C� by 


2 where 
 corresponds to the percent of variability.
The radar parameters used in the simulations are chosen

for a typical OTH radar. The signal center frequency is 10
MHz, the coherent integration time (CIT) is 20 sec, and the
waveform repetition frequency is 60 Hz. The target ground

range and altitude are 1200 km and 5 km, respectively and
the radial velocity is 100 m/s. The number of waveform
samples and pulse samples are N =M = 8.
In the simulations considered here, white Gaussian noise

is assumed with covariance Q = �2nI . Ground range and
altitude estimation results from Monte Carlo simulations
over 120 random realizations as a function of SNR are
shown in �gures 2 and 3 along with the performance pre-
dicted by the CRLB for 15 kHz bandwidth and 
 = 0:25.
The solid line corresponds to the CRLB from (12) where
the environment is known and is equal to the mean environ-
ment. The dashed line corresponds to the hybrid CRLB
from (14) which assumes an uncertain environment with
a known distribution. The dash-dot line corresponds the
CRLB averaged over � if the expectation of J1 in (12) is
only taken over x. This di�ers from the hybrid CRLB in
that, instead of taking the expectation of J1 over �, the
expectation is taken of (J1 + J2)

�1. The hybrid CRLB
predicts increased performance as SNR increases while the
averaged CRLB suggests that the estimation performance
is eventually limited by the uncertainty of the environ-
ment. The MLE performance is plotted with o's for the
case where the environment is known and x's when only
the environment statistics are known. These results follow
the performance predicted by the averaged CRLB where
the ground range estimation performance is limited to 800
m due to the environment uncertainty while the altitude
estimation performance is not degraded by the uncertainty
for a SNR less than 40 dB. The results indicate that, for
a bandwidth of 15 kHz, altitude estimation accuracy at 20
dB SNR is better than 500 m.
Intuitively, the ground range estimate is dependent on

the absolute group delays and elevation angles of the radar
returns, while the altitude estimate depends on the struc-
ture of the complex delay-Doppler return. In other words,
the information about altitude is contained in the relative
di�erences between the multipath returns. For the mul-
tipath scenario presented in this paper, variability in the
ionosphere primarily a�ects the absolute group delays and
elevation angles of the signal returns, but has little e�ect
on the structure of the received signal.
Figures 4 and 5 show the CRLB and simulation results as

a function of signal bandwidth at 20 dB SNR and 
 = 0:25.
These results also illustrate that ground range estimation is
sensitive to environment uncertainty while the uncertainty
has little e�ect on altitude estimation. The results suggest
that, by increasing the signal bandwidth to 25 kHz, the
altitude estimation accuracy is less than 200 m at 20 dB
SNR.

5. CONCLUSIONS

In this paper a maximum likelihood approach to target alti-
tude estimation was presented for an uncertain multipath
environment. It was shown that although target ground
range estimation is sensitive to environment variability, al-
titude estimation is inherently robust to uncertainties in
the environment due to the insensitivity of the complex
delay-Doppler surface structure to environment variability.
For a signal bandwidth of 25 kHz and 20 dB SNR, altitude
estimation performance is predicted to be better than 200
m. The approach presented here can be extended to in-
clude ordinary and extraordinary rays due to a magnetic
�eld and increased multipath due to a bistatic radar con�g-
uration. The increased multipath complexity will increase
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Figure 2. CRLB and MLE simulation results

vs. SNR for ground range estimation.

the structure of the complex delay-Doppler surface.
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Figure 3. CRLB and MLE simulation results

vs. SNR for altitude estimation.
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Figure 4. CRLB and MLE simulation results

vs. bandwidth for ground range estimation.
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Figure 5. CRLB and MLE simulation results

vs. bandwidth for altitude estimation.


