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ABSTRACT

We present a non-stationary signal classi�cation algo-
rithm based on a time-frequency representation and a
multiple hypothesis test. The time-frequency represen-
tation is used to construct a time-dependent quadratic
discriminant function. At selected points in time we
evaluate the discriminant function and form a set of
statistics which are used to test the multiple hypothe-
ses. The multiple hypotheses are treated simultane-
ously using the sequentially rejective Bonferroni test
to control the probability of incorrect classi�cation of
one class. We show results for classifying three classes
of humpback whale calls. The results demonstrate that
this time-frequency method performs favourably when
compared with a frequency domain method which as-
sumes stationarity.

1. INTRODUCTION

In this paper we extend a frequency domain classi�er
for stationary signals [7] to a time-frequency classi�er
for non-stationary signals. The motivation for this ex-
tension is straightforward: the classical technique is
only optimal (in the sense of minimising the probabil-
ity of misclassifying an observation of one kind for a
�xed misclassi�cation rate of the other kind) if the sig-
nal is stationary. This led us to consider a technique
that does not require the signal to be stationary. In
particular, we introduce a time-varying quadratic dis-
criminant function using the spectrogram. We apply
the sequentially rejective Bonferroni test (SRBT) to
the multiple hypotheses that can be constructed at dif-
ferent points in time from this discriminant function.

In the paper we will apply the method to the classi-
�cation of humpback whales, Megaptera novaeangliae,
recorded along the east coast of Australia. An impor-
tant area of research is the study of the behaviour of
the humpback whale so that their reaction to human

intervention can be monitored. Researchers are par-
ticularly interested in how the humpback whales song
evolves over successive years - is there a pattern to the
evolution of the song and ultimately, is the song in-
dicative of the humpback's behaviour? The answers
to these questions are beyond the scope of this paper,
however, we present results for classifying humpback
whale calls, which is the �rst step to a detailed analy-
sis of the humpback's song.

In the next section we formalise the classi�cation
problem. In Section 3 we introduce a time-frequency
based discriminant function for discriminating between
two classes. In Section 4 we summarise the multiple
hypotheses test which we use to make a classi�cation.
In Section 5 we show the results for classifying three
humpback whale calls.

2. PROBLEM STATEMENT

In this section we formalise the problem of classifying
two classes of signals. It is a straightforward extention
for the case where there is more than two classes. Let
fX(x) be the density of X = [X1; : : : ; XN ]

0 a model
for the observation of a discrete Gaussian random pro-
cess and an element of the set ffX(xj#) : # 2 �g
where the parameter vector # 2 � is unknown. Let
�H and �K be subsets of � such that �H

S
�K = �

and �H

T
�K = �. The global decision is viewed in

the normal way as testing the hypotheses H : # 2 �H

against the alternative K : # 2 �K .
In the sequel we introduce a time dependent dis-

criminant function which we use to construct a test
at di�erent times. Let Tni(x); i = 1; : : : ; P denote the
test statistics, where ni is a time index and P � N .
We would like to make a global decision based on the
outcome of a collection of time localised tests given
by f(H1;K1); : : : ; (HP ;KP )g where (Hi;Ki) is the test
corresponding to Tni(x). The corresponding parame-
ter subsets are f(�H1

;�K1
); : : : ; (�HP

;�KP
)g. Let I



be the set of indeces for which Hi=1;:::;P are true. The
global parameter set, under H , is given by the intersec-
tion of the local parameter sets, i.e., �H =

T
i2I �Hi

.
To control the error rate for each local decision we set
a local level of signi�cance, �i. However, this does not
control the global level of signi�cance, �. In general,
� will be much higher than the local levels, �i [4]. In
Section 4 we outline the SRBT, which makes a global
decision based on multiple hypotheses, while maintain-
ing a global level of signi�cance.

In the next section we introduce a function based
on a time-frequency representation for generating the
test statistics, Tni(x).

3. TIME-FREQUENCY DISCRIMINATION

In this section we introduce a time-frequency discrimi-
nant function which is an extension of the power spec-
trum discriminant function given in [7]. Let SX(ni;

2�k
N

)
be the discrete time, discrete frequency representation
(TFR) of a random variable Xn, for n = 1; : : : ; N . For
the case of classifying a signal into one of two classes,
we de�ne the time-dependent discriminant:

Tni(x) =

N�1X
k=0

Ŝx(ni; 2�kN )
�
Ŝ�1
XjHi

(ni; 2�kN )� Ŝ�1
XjKi

(ni; 2�kN )
�

(1)
where: Ŝx(ni; 2�kN ) is an estimate of the TFR from x =
[x1; x2; : : : ; xN ]

0, a realisation of X; ŜXjHi
(ni; 2�kN ), and

ŜXjKi
(ni; 2�kN ), are estimates of the TFRs representing

the two di�erent classes and are assumed to be non-
zero; ni = 1; : : : ; N � 1; and k = 0; : : : ; N � 1, are the
discrete frequency samples.

The discriminant function given by Eq (1) returns
a value at each time, n. Each value is used to construct
a hypothesis, which are then combined and treated
simultaneously. This approach di�ers from previous
time-frequency based methods [2, 8, 1] where the so-
lutions involve integration over time to form a single

hypothesis which can lead, in practical situations, to
misclassi�cation.

Although any TFR could be used in Eq (1) we use
the spectrogram because its statistics are well known.
The spectrogram is de�ned as

Ixx(ni; 2�k
M

) =M�1

�����
M�1X
m=0

xmwm�ne
�j 2�k
M

m

�����

2

(2)

for ni = 0; : : : ; N � 1, k = 0; : : : ;M� 1, M� N ; and
wm is an appropriate window [3] of length M. Un-
der the assumption that the spectrogram is 
at over L
adjacent frequencies, we can use the smoothed spectro-

gram as an estimate of the time-frequency representa-
tion, i.e.,

Ŝx(ni; 2�k
M

) = L�1
(L�1)=2X

l=�(L�1)=2

Ixx(ni;
2�(k+l)

M

) (3)

Under Hi, Tni(X) can be assumed to be normal. An
estimate of the mean is given by [7]

EfTni(X)jHig = (4)

M�1X
k=0

(Ŝ�1
XjKi

(ni; 2�k
M

)� Ŝ�1
XjHi

(ni; 2�k
M

))ŜXjHi
(ni; 2�k

M

)

and an estimate of the variance can be shown to be
given by

varfTni(X)jHig =

M�1X
k=0

(Ŝ�1
XjKi

(ni; 2�k
M

)� Ŝ�1
XjHi

(ni; 2�k
M

))2 (5)

�(EfjIXX(ni; 2�k
M

)j2jHig � ŜXjHi
(ni; 2�k

M

)2)

Similarly, by replacing Hi with Ki the mean and vari-
ance can be estimated under the alternative.

In the next section we outline a multiple hypotheses
test, which uses the results presented in this section, for
treating the test statistics, Tni(x) simultaneously.

4. A MULTIPLE HYPOTHESES TEST

As discussed in Section 2, we would like to test the
global hypotheses H based on the outcomes of a set of
local decisions, f(H1;K1); : : : ; (HP ;KP )g. In this sec-
tion we describe the SRBT [5], which treats a collection
of related hypotheses simultaneously while maintaining
the global level of signi�cance.

In addition to the test statistics, Tni(x), the SRBT
requires the probability values

Pi = P (Tni(X) � Tni(x)jHi)

for i = 1; : : : ; P . The P-values are the probability that
the test statistics, Tni(X) exceeds the observed quan-
tity, Tni(x) under Hi. The P-values are sorted in as-
cending order. Let P(1); : : : ;P(P ) be the sorted prob-
ability values and H(1); : : : ; H(P ) be the corresponding
hypotheses. If P(1) > �=P then accept all hypotheses;
otherwise reject H(1) and proceed to the next test H(2).
This scheme is illustrated in Figure 1.

It is shown in [5] that this tests maintains the global
level of signi�cance.

To extend this method to classify more than one
class we used Eq (1) to perform pairwise comparisons
between each pair of classes.
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Figure 1: Sequentially rejective Bonferroni test.

5. RESULTS

In this section we show results for classifying three dif-
ferent humpback whale calls. The humpback whale
signals were recorded along the east coast of Australia
during their annual migration in 1995. The signals
where digitised at 16kHz and decimated to 8kHz. Each
call was segmented by analysing the signal aurally and
with a spectrogram. For each class there were 15 mem-
bers each 4096 samples long. Each signal was classi-
�ed using the remaining signals to create the estimates
of the class TFRs. The signals were �ltered using a
70 tap FIR high pass �lter with cuto� frequency at
120Hz. This was to remove low frequency noise which
was present in some of the samples. The estimates of
the class spectrograms for classes 1,2, and 3 are shown
in Figures 2, 3, and 4 respectively. The discriminant
function given in Eq (1) requires the inversion of a spec-
trogram, which for values close to zero will adversely
a�ect the calculation. A small regularisation constant
is added to each spectrogram to alleviate this problem.
A window length of 256 was chosen which results in
16 local hypotheses. The results for the SRBT for two
global level of signi�cance, � = 10% and � = 1% are
shown in Table 1 where each row, C1� C3, represents
the class of the input signal and each column, C1�C3,
represents the classi�cation result for this input. The
column, NC, gives the number of \no classi�cation"

� = 10% � = 1%
C1 C2 C3 NC C1 C2 C3 NC

C1 15 0 0 0 15 0 0 0
C2 0 15 0 0 0 15 0 0
C3 0 1 14 0 0 1 13 1

Table 1: Classi�cation results using the SRBT.

� = 10% � = 1%
C1 C2 C3 NC C1 C2 C3 NC

C1 15 0 0 0 15 0 0 0
C2 0 15 0 0 0 13 0 2
C3 0 0 10 5 0 2 7 8

Table 2: Classi�cation results using Power Spectra.

results, i.e., when the algorithm could not discriminate
between the three signal at the set level of signi�cance.
The spectrograms were not smoothed in either of these
experiments.

If we take the spectrogram window length equal
to the signal length then the resulting classi�er is the
power spectrum classi�er proposed in [7]. The results
for this method, which is optimal for a �xed signi�-
cance level, for stationary signals are shown in Table
2. For � = 10% a smoothing window of length 8 was
used. However, for � = 1% no smoothing was used. For
lower values of � discrimination occurs more frequently
in the tails of the distribution. Smoothing reduces the
likelihood of the value of the test statistic being in the
tails. Therefore, smoothing increases the number of no
classi�cation results and so was not always used.

From Tables 1 and 2 it can be seen that the SRBT
based method performs at least as well as the power
spectrum based method. For class 3 the SRBT con-
sistently gives superior results due to a highly non-
stationary feature at 0.3 second and 2kHz.

6. CONCLUSION

We have presented a new method for the classi�cation
of non-stationary signals by combining time-
frequency analysis with multiple hypothesis testing. A
time-frequency discriminant function was used to form
a set of time localised tests. A global decision was
made by treating the tests simultaneously using the
sequentially rejective Bonferroni test. This multiple
hypotheses test was used to control the global level of
signi�cance. Results are shown for the classi�cation
of three classes of humpback whale calls. The multiple
hypotheses method showed superior performance when
compared to a power spectrum based method which
assumes stationarity.
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Figure 2: Estimate of class 1 spectrogram.
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Figure 3: Estimate of class 2 spectrogram.
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Figure 4: Estimate of class 3 spectrogram.
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