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ABSTRACT

Presented in this work are analytical expressions of the

performance measure on the LMMSE estimate-based

multiuser detector, including error probability expres-

sion and its computationally and notationally e�cient

approximations, signal to interference-plus-noise ratio,

and asymptotic e�ciency. Also included in this work

are adaptive implementation schemes of the LMMSE

detector and the equivalent relation between them un-

der appropriate assumptions. Simulations are included

to show the tightness of approximate results over a

wide range of near-far ratio and various combinations

of SNRs of interfering multiple-access users.

1. INTRODUCTION

Multiuser separation and interference suppression is

an active research topic in CDMA communications.

The major driving force for continued research in mul-

tiuser detection is the combination of a better under-

standing on the statistics of multiple-access interfer-

ence (MAI) and the promising feature of near-far re-

sistance o�ered by multiuser detector that eliminates

the need for stringent power control [1]. The opti-

mum solution to the problem under ideal Gaussian

MA channel was proposed in [2]. Due to the com-

putational complexity (exponential to the number of

users) of the optimum solution, sub-optimum solutions

[3 � 8] become more attractive for practical applica-

tions. Among various sub-optimum detectors proposed

recently, the linear decorrelating detector [3�4] has re-

ceived most attention and is well-cited due to its com-

putational simplicity (linear in the number of users)

and near-far resistant properties. A drawback associ-

ated with this detector is the e�ect of noise enhance-

ment (analogous to that in the zero-forcing equalizer),

which limits its performance in situation where noise

level is dominant over or comparable to MAI. The lin-

ear minimum mean squared error (LMMSE) estimate-
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based multiuser detector [7� 8] overcomes this perfor-

mance limit, at the same time maintains computational

simplicity and near-far resistance. The LMMSE detec-

tor is of most practical importance among all linear

estimate-based multiuser detectors. Since the LMMSE

detector belongs to linear Bayesian-based multiuser de-

tector, it o�ers the best (among all linear detectors)

trade-o� between bias (MAI residue) and noise variance

in terms of mean squared error (MSE) on the estimate,

on which a decision is based. This �nally provides im-

proved performance (see details in sections 2-3 of this

work). Other important features of the LMMSE detec-

tor are the possibility of adaptive implementation and

performance robustness in changing environment [8].

This work focuses on performance analyses of the

LMMSE multiuser detector and relationship between

di�erent performance measure, such as error probabil-

ity and its approximations, signal to interference-plus-

noise ratio, and asymptotic e�ciency.

2. NOTATION AND PROBLEM

FORMULATION

In code-division multiple-access (CDMA) systems, all

MA users share the same wideband channel simultane-

ously (joint time-frequency sharing), while each user

is assigned a distinct spreading signature waveform.

Therefore the baseband data r(t) at a receiver is ac-

tually a summation of multiuser signals embedded in

additive noise, or,

r(t) =
X
i

KX
k=1

p
ak bk(i) sk(t� i T � �k) + n(t) ; (1)

where K is the number of users; i is the symbol index;

ak; bk(i); sk(t); and �k are the bit energy, information

bit, signature waveform (of duration T ), and propaga-

tion delay of the kth user, respectively; n(t) is a white

Gaussian process, with two-sided power spectral den-

sity of �2.

For synchronous channel, all the delays �k's are equal,

we can then treat �k = 0 (k = 1; 2; : : : ; K) without



loss of generality. In this work, we only consider the

synchronous channel for the purpose of national sim-

plicity. Note that once the channel is synchronized,

all the information bits of the multiusers in the ith

symbol interval are completely contained in the data

r(t) within the ith symbol interval. Therefore, we can

concentrate on solving multiuser separation problem

within a speci�c symbol interval. For a speci�c bit in-

terval, say i = 0 to ignore the symbol index i, we can

rewrite (1) as,

r(t) =
�
s1(t) s2(t) � � � sK(t)

� �A �b+ n(t) ;

= S(t) �A � b+ n(t) ; ( 0 � t � T ) ;

(2)
with A = diagfpa1; pa2; � � � ; paK g being a posi-

tive diagonal matrix of amplitudes of MA users, and

b = [ b1 b2 � � � bK ]T being a vector of binary infor-

mation bit of MA users ( bk 2 f�1; +1 g with equal

probability, and bk's are i.i.d.). Columns of S(t) are

signature waveforms of MA users (assuming sk(t) is of

duration T and normalized k sk(t) k = 1).

If we �lter r(t) with a bank of matched �lters (MFs),

whose impulse responses are given by, hk(t) = sk(T �
t) ; (k = 1; 2; : : : ; K) and columnize the sampled out-

puts of the bank of matched �lters at t = T , we get the

following matrix notation,

x = P �A � b| {z }
�

+n ; | linear model (3)

where x =
�
x1(T ) x2(T ) � � � xK(T )

�
T

, with xk(T ) =

r(t) � hk(t) jt=T being the kth matched �lter output

sampled at t = T ; and n � N (0; �2P) being colored

Gaussian noise due to matched �ltering.

Note that the linear model in (3) is also valid for

asynchronous channel, except for a larger dimension.

Since for asynchronous channel, by introducing the par-

titioned signature waveforms s1(t); s
L

2 (t); sR2 (t); � � � ;
sL
K
(t); and sR

K
(t), the resultant matrix P in (3) is of

a dimension (2K � 1) � (2K � 1). For synchronous

channel, the matrix P in (3) is simply a nonsingular,

positive de�nite, symmetric, cross-correlation matrix of

the signature waveforms. Its elements are given by,

P [i; j] =

Z T

0

si(t) sj(t) dt
4
= �i j ;

i = 1; 2; : : : ; K; j = 1; 2; : : : ; K:

In practice, due to the �nite bandwidth constraint and

the existence of a large number of users, the signa-

ture waveforms are not ideally orthonormal. The non-

diagonal nature of the P matrix will cause the MAI,

which is the cause of the near-far problem in conven-

tional matched �lter receiver. In order to combat the

near-far problem, various detectors have been proposed

[1�8]. In this work, we mainly concentrated on the per-

formancemeasure and implementation issues of LMMSE

multiuser detectors [7� 9].

3. THE LMMSE DETECTOR:

PERFORMANCE MEASURE &

APPROXIMATIONS

The LMMSE detector [6 � 9] was proposed and an-

alyzed in comparison with the decorrelating detector

from various aspects, mainly through simulations. The

most commonly known form of it is the following one,

Decision rule: b̂ = sgn fWxg ;

with W = (P+ �2A�2)�1 :
(4)

where x is a vector of MF output de�ned in (3).

The results in (4) give an impression that the knowl-

edge of signature waveforms of MA users (used to form

MFs and get P matrix) and SNR matrix of MA users

are needed in order to implement this detector. In this

work, we prove the equivalence of the LMMSE detector

in (4) and the following one,

Decision rule: b̂ = sgn
�
S
T ��1rr r

	
; (5)

where r is a vector of chip-rate sampled data in (2),

and �rr is the covariance matrix of data r. Or, specif-

ically, �rr = SA
2
S
T + �2 I. In deriving the equiv-

alence of detectors in (4) and (5), we �rst notice the

fact that the sgn(�) operator on any vector is invari-

ant to any positive de�nite diagonal matrix operation,

i.e. sgn(A � ) = sgn(�) in (5). Based on the above

observation, we then have,

sgn
�
S
T ��1rr r

	
= sgn

�
A

2
S
T ��1rr r

	
;

= sgn
�
A

2
S
T (SA2

S
T + �2 I )�1 r

	
;

= sgn
�
��2A2 ( I �PW )ST r

	
;

= sgn
�
(P+ �2A�2 )�1 x

	
:

(6)

In getting the last two equations in (6), matrix inver-

sion lemma in combination with the facts P = S
T
S,

and x = S
T
r is used. As a matter of fact, the LMMSE

detector of (5) can be derived by applying the LMMSE

criterion and the invariance property on the chip-rate

sampled data r = SAb + n0 with n0 being white

noise (covariance matrix �2 I) independent of b. Since,

b̂ = sgn
n
�̂LMMSE

o
= sgn

�
�� r�

�1
rr r

	
= sgn

�
A

2
S
T ��1rr r

	
= sgn

�
S
T ��1rr r

	
:

What makes the second form of LMMSE detector in (5)

attractive is the fact that only the signature waveform

of the desired user, say the kth user, is need in decoding



its information bit. That is,

b̂k = sgn
�
s
T

k �
�1
rr r

	
; | generalized MF ; (7)

where sTk is the kth row of ST (the kth user's signa-

ture waveform sampled at chip-rate), and ��1rr can be

sequentially estimated from data sequence fr(i)g af-

ter proper initialization (see section 4 for a data-driven

adaptive implementation scheme).

In this work, we derive some other performance

measure of the LMMSE detector. One of the per-

formance measure commonly used in practice is the

signal to interference-plus-noise ratio (SINR). For the

LMMSE detector, both bias (MAI residue) and noise

exist in the decision statistics/estimator [10]. We cal-

culated the kth user's SNIR as,

SNIRk =
ak

�
1� �T

k
(Pk + �2A�2k )�1 �

k

�
�2

; (8)

where matrices Pk, Ak and vector �
k
are constructed

from P, A, and �k, respectively, by removing the con-

tribution (the kth row and column for matrix, the kth

element for vector) of the kth user.

In addition, we calculated the minimummean squared

error (MMSE) of the kth user,

MMSEk = E
n
(�k � �̂k )

2
o
; with �k =

p
ak bk ;

= �2wk(k) ;

=
�2

1 + �2=ak � �T
k

�
Pk + �2A�2

k

��1
�
k

:

(9)
The relation between SINRk in (8) and MMSEk in

(9) can then be established as,

SINRk =
ak

MMSEk
� 1 : (10)

Formula (10) reveals the equivalence between minimiz-

ing MSE and maximizing SINR under linear constraint.

In [9], we derived the following analytical expression of

error probability (kth user) of the LMMSE detector,

Pe(k) =
1

2K

X
b

Q

 p
ak � bk �

2
w
T

k A
�1
b

�
p
wT

k Pwk

!
; (11)

where wk is the kth column ofW matrix in (4) (see [9]

for precise expression ofwk). Q(�) =
R1
�

1p
2�

e�
x
2

2 dx.

Based on the assumption on the statistics of b in sec-

tion 2, we can write Pe(k) in (11) as,

Pe(k) = E fQ(�k) g ;

with Q(�k) = Q

 p
ak � bk �

2
w
T

k A
�1
b

�
p
wT

k Pwk

!
(12)

where the expectation E(�) is with respect to b, the

random information bit of MA users.

In order to get computationally and notationally more

e�cient approximations to Pe(k) in (11) and (12), we

�rst expand the above Q(�k) function (it is a 1-D func-

tion of random vector b) at a non-random point spec-

i�ed by the square root of SINRk in (8),

Q(�k) = Q(
p
SINRk)

+

1X
n=1

�
�k �

p
SINRk

�n
n!

Q(n)
�p

SINRk

�
:

(13)

Taking the E(�) operation on both sides of (13) and

ignoring the contribution from the second term (in�nite

sum), we then obtain the simplest approximation of

Pe(k) of (11) as follows,

Pe(k) � Q

0
BB@
vuutak

�
1� �T

k
(Pk + �2A�2k )�1 �

k

�
�2

1
CCA ;

(14)

The reason of ignoring the remaining terms in (13)

in getting (14) is that the combined contribution from

the expectation of remaining terms (grouping every two

successive terms) of in�nite sum in (13) is very small

compared to the �rst dominant term over a wide range

of SNRs. We also verify this fact through simulations

in section 4. As a by-product, we also expand the Q(�k)

at ponit �k, the mean value of �k, and obtaine a less

e�cient approximation (it contains more terms),

Pe(k) � Q
�
�k
�
+

�2wT

k A
�2
k wk

2wT

k Pwk

�kp
2�

e
�
�
2

k

2 ; (15)

with �k =

p
ak � �2wk(k)

1p
ak

�
p
w
T

k Pwk

; and wk is formed

from wk by eliminating its kth element.

Based on (14), a good approximate expression for

the asymptotic e�ciency of the LMMSE detector can

be obtained. Or,

k � 1� �T
k
(Pk + �2A�2k )�1 �

k
: (16)

In section 4, we numerically evaluate all these analyti-

cal results along with computer simulations to show the

tightness of approximations in (14) and (15) over a wide

range of di�erent combinations of SNRs of MA users.

Formula (14) also reveals an important fact that there

exists an approximate equivalence between minimizing

MSE (maximizing the SINR) and minimizing the error

probability under linear contsraint and Gaussian noise.

In order to make a comparision with the well-known

decorrelating detector ( b̂ = sgnf (P�1 x g), we also



derived the error probability and asymptotic e�ciency

of of it as follows, bbb

PDEC
e (k) = Q

0
@
s

ak (1� �T
k
P
�1
k �

k
)

�2

1
A � Q

�r
ak

�2

�
;

Asymptotic e�ciency: DECk = 1� �T
k
P
�1
k �

k
;

SINR: SNIRDEC
k =

ak (1� �T
k
P
�1
k �

k
)

�2
:

From the above analytical expressions, it can be easily

seen that the asymptotic e�ciency of the LMMSE de-

tector LMMSEk is always lower bounded by that of the

decorrelating detector DECk . Similarly, the error prob-

ability of the LMMSE detector PLMMSE

e (k) is always

upper bounded by that of the decorrelating detector

PDEC

e (k). Therefore, the LMMSE detector always pro-

vides better detection performance than decorrelating

detector. Of most importance, the proposed form of

LMMSE in (7) needs less knowledge (only the signa-

ture of the desired user is needed) about MA users'

signatures than the decorrelating detector. A practical

data-driven version of the LMMSE detector is proposed

in section 4.

4. DATA-DRIVEN ADAPTIVE

IMPLEMENTATION

As mentioned above, the new form of LMMSE detector

in (5) and (7) provides the possibility of implementing

it in a data adaptive way, so that only the signature of

the desired kth user is needed in order to decode its in-

formation bits f bk(i) g. In this proposed computation-

ally e�cient data-adaptive scheme, we use the properly

initialized and data-driven updated sample covariance

estimate �̂rr to replace the true �rr without actu-

ally conducting the matrix inversion. The algorithm is

summarized as follows,

� Initialization stage (i=1):

�̂�1rr(i) = IL ; b̂k(i) = sign
n
s
T

k �̂
�1
rr(i) r(i)

o
:

� Update stage (for i = 2; 3; � � �):
�̂�1rr(i) =

1

�i
�̂�1rr(i� 1)

��i

�2i

�̂�1rr(i � 1) r(i) rT (i) �̂�1rr(i � 1)

1 +
�i

�i
r
T (i) �̂�1rr(i� 1) r(i)

;

b̂k(i) = sign
n
s
T

k �̂
�1
rr(i) r(i)

o
:

where �i = 1=i; �i = 1� �i.

Numerical evaluations and computer simulations shown

in the following �gures verify our analyses. Gode codes

of various length (L) were used as spreading signatures

in our simulations.
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Figure 1: Performance comparison of proposed data-adaptive

LMMSE detectors and analysis results.
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