
VERY LONG INSTRUCTION WORD ARCHITECTURES FOR DIGITAL SIGNAL

PROCESSING

Jonathon D. Mellott1;2 Fred Taylor1

1High Speed Digital Architecture Laboratory, Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL, 32611, USA

2The Athena Group, Inc., 3424 NW 31st Street, Gainesville, FL, 32605, USA

ABSTRACT

Due to advancements in semiconductor processing
technology, unprecedented levels of system integration
are now possible in digital signal processing systems.
MIMD/multicomputer architectures used for parallel dig-
ital signal processing applications are not always e�cient,
and are di�cult to program. Very long instruction word
processors are uniquely suited to digital signal process-
ing applications, able to exploit opportunities for �ne and
coarse grained parallelism e�ciently without the overhead
of MIMD/multicomputer approaches. A
exible, high-level
language programming environment has been developed in
support of this processor paradigm.

1. INTRODUCTION

Since the 1970s the semiconductor industry has experienced
geometric growth in the number of transistors that can be
placed on a chip [1]. With time, designers of digital signal
processing devices have been able to take advantage of the
geometric growth with respect to the number of transistors
that could be placed on a chip to produce successive gen-
erations of processors that o�ered greater performance due
to the increased number of circuit elements available. For
example, consider the TMS320 DSP family. Using the six-
teen bit, �xed-point C10 generation as a baseline, the C20
generation augmented the C10 architecture with a fast mul-
tiplier. The C30 generation used a thirty-two bit
oating
point architecture. The C40 generation added DMA proces-
sors for multicomputer interconnect to the C30 core. As the
number of available circuit elements per chip increases, in-
creasingly more functionality can be added. As the number
of functional units that can be placed on a single chip pro-
cessor increases, the question of how to actually use those
resources e�ciently becomes very di�cult to answer.

In this paper, the application of very long instruction
word (VLIW) architectural techniques for high perfor-
mance digital signal processors that are not highly appli-
cation speci�c will be examined. Existing solutions based
on general purpose digital signal processors have concen-
trated on MIMD parallel solutions (e.g., Texas Instruments
TMS320C40 and TMS320C80 products); these solutions
have not proven to be entirely satisfactory due to system
integration and software development obstacles. While, for
the development of DSP algorithms, a block diagram ap-
proach is attractive, the application of that methodology

to a multi-DSP microprocessor solution may lead to regret-
table software and hardware ine�ciencies, see Figure 1. In
particular, interprocessor communications can consume sig-
ni�cant hardware resources, while barrier synchronization
can consume signi�cant processor time resources. Also,
software development cycles are extended when program-
ming in this type of environment when compared to a con-
ventional uniprocessor development environment. While
this latter element is mitigated to some extent by new tools
that have been developed to address the di�culties inherent
in this type of programming, the former problems remain.

DSP

Operation

DSP

Operation

DSP

Operation

..
..
..
..
..
..
..
..
..
..
..
..
....
..
..
..
..
..
..
..
..
..
..
..
.. ..

..
..
..
..
..
..
..
..
..
..
..
....
..
..
..
..
..
..
..
..
..
..
..
..

DSP

Processor

DSP

Processor

DSP

Processor

- - --

--- -

?? ?

Input Output

Input Output

Algorithm to

Processor

Mapping

Implementation Domain

Algorithmic Domain (Block Diagram)

Figure 1. Conventional Mapping of DSP Block Di-

agram to Multiprocessor Implementation

Digital signal processing applications are especially well
suited for VLIW architectures, given their regular algorith-
mic structure and data
ow properties, and that the na-
ture of digital signal processing implementations sidesteps
the most troublesome software life-cycle compatibility is-
sues that currently hinder the widespread application of
VLIW techniques in the general purpose computer market.
VLIW techniques can be used to exploit opportunities for
instruction-level parallelism just as superscalar and super-
pipelining techniques are also used to exploit opportuni-
ties for instruction level parallelism [2]. VLIW instruction
scheduling techniques can also be adapted to allow oppor-
tunities for block-level parallelism to be exploited. A sig-
ni�cant advantage of VLIW architecture over the compet-
ing superscalar architecture is that the hardware resources

that are expended in superscalar architectures to support
multiple instruction issue are eliminated in VLIW and are
therefore available for additional functional units or other
architectural resources [3].

2. ARCHITECTURAL FEATURES FOR VLIW

DSP

The demands placed upon a DSP microprocessor are some-
what di�erent from those placed upon a general purpose
processor. These di�erences impact the choices that are
made in the design of the architectures for each problem.
Some of the most signi�cant di�erences are:

� Processor Core In a general purpose machine, the
processor core is called upon to perform a variety of
arithmetic and logic operations on a variety of data
types ranging from characters, to integers, to
oating-
point numbers. In a DSP machine, the processor core
only has to perform multiply-accumulate operations ef-
�ciently to be e�cient for most DSP applications.

� Memory Addressing In DSP applications most pro-
cessing is performed on arrays of data. The types of
processing to be performed usually demand special ad-
dressing features such as circular or bit-reversed ad-
dressing of arrays. Due to the dominance of these
operations in DSP, justi�cation for inclusion of these
resources at the hardware level is easily obtained,
whereas in general purpose architectures these features
usually cannot be justi�ed.

� Data Locality Data locality di�ers greatly between
general purpose applications and DSP applications.
Since most DSP operations are upon arrays of data,
there is usually little bene�t to a large register �le as
would be found in a general purpose architecture. Like-
wise, since DSP applications tend to operate on large
arrays of data, they violate the \cache assumption"
that justi�es the inclusion of data cache memories in
general purpose architectures. Instead, since access to
arrays of data in DSP applications is predictable, inclu-
sion of on-chip data memories is more bene�cial than
data cache.

� Programming The issues in programming a DSP are
signi�cantly di�erent from those in general purpose
computing. Since most DSP applications are single-
tasking, hard real-time in nature, instruction execu-
tion timing must be predictable in order to guarantee
task completion. Since most DSP applications are em-
bedded, the use of assembly language programming or
additional programmer e�ort to optimize code can usu-
ally be justi�ed if it resulting in more e�cient use of
hardware resources which can be re
ected in manufac-
turing savings.

In order to meet the needs of high performance DSP ap-
plications, the developed VLIW architecture for DSP in-
cludes the following architectural resources:

� integer (�xed-point) multiplier-accumulator and ALU
units,

� memory addressing units capable of supporting circular
(modular) and bit-reversed addressing,

� local data memories,

� DMA for programmed management of on-chip and ex-
ternal memories, and

� correlation/convolution/�lter accelerator engines.

A block diagram of a VLIW DSP architecture is shown in
Figure 2.

Figure 2. Block Diagram of VLIW DSP Architec-

ture

In the block diagram of the architecture in Figure 2, the
external memory access interface is an obvious potential
bottleneck. A practical architecture must be essentially
von Neumann | at least externally. Internally, the ar-
chitecture may use whatever reasonable machinations that
are required to prevent processing resources from stalling.
In order to mitigate the von Neumann bottleneck, on-chip
memory resources are included. These resources are not
cache memories. The on-chip memories must be managed
under programmed control. While this might appear to be
di�cult, since DSP applications have regular data access
patterns, it is not an impossible task.
The correlator/convolution/�lter accelerator engine uses

arithmetic units based upon the residue number system
(RNS). The architecture used for these units is in
uenced
by the the previously reported Athena Sensor Arithmetic
Processor (ASAP) [4], a special purpose device capable
of performing video rate FFTs and image processing op-
erations, see Figure 3. A block diagram of the correla-
tor/convolution/�lter accelerator engine is shown in Fig-
ure 4. The pictured accelerator block is shorter than the
correlator array in ASAP. By using a shorter array of pro-
cessors, smaller computations can be handled more e�-
ciently than with the longer ASAP array. In order to
handle longer computations a chaining option is provided.
Additional capabilities have been added to the arithmetic
units to aid in the execution of common video signal pro-
cessing applications. By combining RNS arithmetic capa-
bilities, which can provide an order of magnitude speed-
area advantage over conventional arithmetic technologies,
with conventional arithmetic units to o�set the well-known
disadvantages of residue arithmetic computing, a high-
performance, low-cost architecture is achieved.
The developed architecture is scalable in that it is possi-

ble to synthesize processors with varying numbers of each

Figure 3. ASAP RNS Array Processor (courtesy of

The Athena Group, Inc.)

functional unit. This allows the processor to be tailored to
a particular problem in a relatively e�cient manner. For
example, if it is known that RNS computational units will
not be used then they do not have to be included in the
architecture. Also, if during the software development cy-
cle it is determined that the processor has oversubscribed
(or undersubscribed) functional units, then the processor
architecture can be tuned appropriately with an incremen-
tal increase (or decrease) in expense. The high-level lan-
guage software development environment, discussed in the
the next section, allows code to be migrated into di�erent
processor performance levels with a recompilation.

3. SOFTWARE SUPPORT FOR VLIW DSP

Programming a VLIW architecture is potentially a daunt-
ing task. Fortunately, DSP application codes tend to be
small and therefore are approachable. However, there are
a number of problems where the di�culty and expense of
working in assembler cannot be justi�ed. Furthermore, the
software development cycle is having an ever increasing im-
pact on time-to-market for many product development ef-
forts. In order to speed the software development cycle,
more DSP programmers are turning to high-level languages
to speed up the software development cycle. The language
of choice is the C programming language. C was origi-
nally developed as a high-level assembly language to allow
the implementation of Unix on a general purpose machine.
Many of the features of the C language re
ect the underly-
ing architecture of the machine for which it was developed;
those machines that have come after have, to a large extent,
been optimized to run programs written in C. The adoption
of the C programming language as a \high-level assembly
language" for DSP processors has lead to poor results. The
features of the C programming language do not all map e�-

Figure 4. Block Diagram of RNS Correla-

tor/Convolver Vector Unit

ciently to DSP processors, and many of the special features
of a DSP processor are not re
ected in the C language. Two
techniques have been used in order to mitigate this prob-
lem, namely hand-coded libraries and idiomatic translation.
Hand coded libraries are a good solution for many particu-
lar DSP problems but su�er from the fact that they must be
coded for each architecture in which one might use them.
Idiomatic translation has the disadvantage of layering an
additional level of "language" over the core language and
serves to further complicate the software development task.
What is really needed is a high-level assembly language for
DSP.

The authors have developed and are re�ning a high-
level assembly language for digital signal processing that is
based loosely upon the C language and is called Cdsp. The
Cdsp language has constructs that re
ect the architecture
of DSP processors and eliminates those constructs that do
not translate e�ciently into DSP code. The language also
includes features that allow the programmer to explicitly
identify opportunities for block-level parallelism along with
relaxed data dependency relationships. By working in a
high level language the programmer is also insulated from
architectural shifts. As previously stated, it is conceivable
that within the course of a software development e�ort that
the number of functional units in a VLIW processor might
change. This would impact all assembly code (since the size
of the instruction word would change), but would not e�ect
a high-level language program at the source level. The ad-
vantages of this are manifold, and well understood in the
general purpose computing market but have not yet been
realized in DSP applications.

In order to demonstrate the advantage of this approach,
consider the inner product | the work-horse of DSP. The
inner product,

y =

N�1X

n=0

anxn; (1)

is typically implemented using a tight loop on a DSP micro-
processor. Generally, the sum is accumulated in N cycles
using a sequence of multiply-accumulate instructions. It is
clear that the inner product is parallelizable by breaking
the sum into two smaller sums and then adding:

y =

dN=2e�1X

n=0

anxn +

N�1X

n=dN=2e

anxn: (2)

On a multicomputer con�gured DSP system such as that
shown in Figure 1, little or no speedup may be achieved by
parallelizing this sum due to interprocessor communication
and barrier synchronization overhead. In a VLIW environ-
ment, the sum is parallelized at compile time according to
the number of functional units available. Barrier synchro-
nization comes at little or no run-time expense since an
optimal instruction schedule where timing relationships be-
tween instruction streams are known, is generated at com-
pile time. Fine grained instruction level parallelism comes
at no hardware expense since all instruction scheduling is
performed at compile time.

3.1. Compiler Implementation

The Cdsp compiler is implemented in the usual manner [5].
An LALR grammar, Lex, and Yacc are used to generate
a translator that produces an intermediate three-address
code. This intermediate code is then given to an optimizer
that provides many of the usual optimizations expected in
a high level language compiler [6]. Instruction scheduling
and code emission is controlled by a target processor pro�le
that determines the number of each computational resource
available in a particular target con�guration. A block di-
agram of the compiler
ow is shown in Figure 5. The in-
struction scheduler uses well understood techniques for ex-
ploiting instruction level and block level parallelism, such
as trace scheduling [7].

Source Analysis

?

?

-

?

?

?

Optimizer

Instruction Scheduler

Target Processor Con�guration

Intermediate (3 address) Code

Source

Object

Figure 5. Block Diagram of Compiler Flow

4. CONCLUSIONS

A VLIW architecture is an attractive alternative to
MIMD/multicomputer approaches for implementing digital
signal processors with multiple functional units. VLIW of-
fers the advantages of superscalar implementations without
the overhead expense of instruction scheduling hardware
since all instructions are scheduled at compile time. Digital
signal processing algorithms are particularly well suited to
VLIW architectures due to the dominance of simple loops
and regular data
ow. With high-level language software
development tools it is possible to write applications and
target them to processors with just enough of each proces-
sor resource (e.g., arithmetic units, memory) to meet the
requirements of the particular problem.
This work is preliminary in nature. As the work pro-

ceeds it will be possible to judge the ultimate limitations of
this approach. Of particular interest are the upper limita-
tions on the number of functional units that may e�ectively
be scheduled for typical DSP code and the level of perfor-
mance that is represented by that upper limit. It will also
be necessary to produce a fair comparison of this proces-
sor architecture with current, state-of-the-art digital signal
processors.

REFERENCES

[1] G. D. Hutcheson and J. D. Hutcheson, \Technology
and economics in the semiconductor industry," Scien-

ti�c American, vol. 274, pp. 54{62, Jan. 1996.

[2] M. Gokhale and W. Carlson, \Introduction to compila-
tion issues for parallel machines," Journal of Supercom-

puting, vol. 6, pp. 283{314, Dec. 1992.

[3] J. Fisher and B. Rau, \Instruction-level parallel pro-
cessing," Science, vol. 253, pp. 1233{1241, Sept. 1991.

[4] J. D. Mellott, M. Lewis, and F. J. Taylor, \ASAP { a 2D
DFT VLSI processor and architecture," in Proc. IEEE

International Conf. on Acoustics, Speech, and Signal

Processing, (Atlanta), 1996.

[5] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Prin-

ciples, Techniques, and Tools. Reading, Massachusetts:
Addison-Wesley, 1986.

[6] M. Wolfe, High Performance Compilers for Parallel

Computing. Reading, Massachusetts: Addison-Wesley,
1996.

[7] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Trans. Comput-

ers, vol. 30, pp. 478{490, July 1981.

