
A NOVEL 32 BIT RISC ARCHITECTURE UNIFYING RISC AND DSP

Christoph Baumhof Frank M�uller Otto M�uller Manfred Schlett

hyperstone electronics GmbH

Am Seerhein 8, D-78467 Konstanz, Germany

cbaumhof@hyperstone.de

ABSTRACT

A novel 32 bit RISC architecture is presented which is
the basis of a powerful general purpose microprocessor
and in parallel a 16/32 bit �xed point DSP processor.
This unifying of RISC and DSP was not achieved by
simply using a microprocessor and DSP core, but a
new concept for the implementation of DSP processors
has been developed. With the architecture presented
it has been proven that a DSP processor can be im-
plemented using strictly the RISC design philosophy.
Besides providing basic 16 bit �xed point functionality,
the architecture implements a set of DSP instructions
that support an e�cient mapping of common DSP al-
gorithms to the processor.

1. MOTIVATION

The emerging telecommunication and multimedia mar-
kets are creating new demands for embedded con-
trol performance. More and more applications require
both: a microcontroller and a programmable DSP pro-
cessor. The �rst step in implementing such systems
was the simple and straightforward utilization of two
separate processors: one for the controller tasks and
one for the DSP algorithms.
The concept presented here narrows the gap between

the microcontroller and DSP worlds by integrating a 32
bit microprocessor and a 16 bit �xed point DSP in a
single architecture. Besides the advantage of combin-
ing the two worlds, this approach o�ers a simpli�ed
system design and reduces the overall costs. In addi-
tion, the RISC philosophy [1, 2] o�ers a clear roadmap
to a higher DSP performance with a minimum of gates
required for implementing the DSP functionality [3].

2. RISC-BASED DSP

The new concept that we call \RISC-based DSP" aims
to rival classic DSP architectures by enhancing a RISC
microprocessor by a DSP unit executing the basic ex-
pressions of DSP algorithms [2, 4]. This unit has been
optimized for 16 bit �xed point arithmetic but also pro-
vides support for 32 bit numbers.

For a successful DSP design, fast execution of the ba-
sic DSP expressions alone is not su�cient. Issues like
fast loop processing, high data bandwidth and deter-
ministic program ow have to be addressed. Further-
more, the 16 bit data format has to be integrated into
the 32 bit architecture in a way that ensures e�cient
data handling.

2.1. The Basic RISC Architecture

The basic 32 bit RISC architecture provides the follow-
ing characteristics supporting fast DSP processing:

� simple two stage decode/execute pipeline with sin-
gle cycle delayed branches

� almost all ALU instructions are single cycle pro-
viding fast loop control, address calculation and
index updates

� simple 128 byte instruction cache organized as a
circular bu�er to ensure a deterministic program
ow

� pipelined memory access for a high bandwidth and
to avoid wait cycles during loading or storing data
from external memory to registers and vice versa

� 96 general purpose registers (32 bit) for a high pro-
gramming exibility

� register windowing technique for fast interrupt
processing and fast parameter passing to subrou-
tines.

A block diagram of the E1-32 processor implement-
ing these characteristics is shown in �gure 1.
For the integration of the 16 bit data format into the

32 bit RISC architecture, the 32 bit registers can be
split into an upper and a lower 16 bit part. This in-
troduces a new register data format: a 32 bit register
can hold two 16 bit numbers. The DSP unit operates
directly on the two 16 bit words given in a 32 bit source
register. This technique is known as subword process-
ing, see for example [5, 6].

2.2. The DSP unit

The DSP unit enhances the instruction set of the basic
RISC architecture by a set of DSP instructions execut-
ing the arithmetic part of a DSP algorithm. Supported



Control
Bus

Data
Bus

Address
Bus

6

?

6

?

6

?

Load/Store Pipeline

Bus Interface Unit 4 KByte
RAM

-
-

�
�

Instruction
Cache

Decode

Execute

ALU

Barrel
Shifter

DSP
Unit

6
?

Register File

System Registers
User Registers

DSP
Registers

�

?

6

?

6

Figure 1. E1-32 block diagram

data types include 16 bit integer, 16 bit �xed point
and 16 bit complex �xed point as well as 32 bit inte-
ger. The following set of DSP instructions has been
implemented:

� multiply (16 and 32 bit)
� multiply-accumulate (16 and 32 bit)
� complex multiply
� complex multiply-accumulate
� add-subtract
� add-subtract with �xed point adjustment.

A block diagram of the DSP unit implemented in the
E1-32 processor is shown in �gure 2.
The DSP instructions o�er up to four latency cycles,

but with four operands this means a throughput of one
operation per cycle. The latency cycles can be e�-
ciently used for memory accesses and index update and
loop control instructions. This three-fold parallelism
between ALU, DSP unit and memory access pipeline
based on using latency cycles e�ciently removes the
need to implement superscalar features.
In order to avoid register conicts when loading new

data into the source registers of a preceding DSP in-
struction, the DSP instruction results are always stored
in two dedicated 32 bit DSP result registers. Thus, new
operands can be loaded immediately after the issue of
a DSP instruction. The two result registers can be
addressed by other instructions just like conventional
registers. They can be organized as four 16 bit reg-
isters, two 32 bit registers or as one 64 bit register.
The programmer can use them as a 32 bit or a 64 bit

31..16 15..0 31..16 15..0

G14 G15

Register File

64 bit Accumulator Latch

?

6

48 bit Adder

?

shr 15

?
�

6

16� 16 bit
Multiplier Array

?

? ?

?

31..16 15..0 31..16 15..0

? ?

DSP Unit

Ls Ld

? ?

Register File

Figure 2. DSP unit block diagram

accumulator in the multiply-accumulate instructions.
Longer accumulators can easily be realized in software
using general purpose registers.

As the memory access pipeline is capable of loading
or storing 32 bits of data per clock cycle, data bot-
tlenecks are avoided. Two 16 bit data words can be
loaded in each clock cycle even from external memory.
The E1-32 load and store instructions support 8, 16,
32 and 64 bit operation.

Based on the philosophy of keeping the architec-
ture as simple as possible, we implemented overow
handling with a user trap. Programmers can enable
the overow exception handling that traps to a user-
speci�ed software routine when an overow occurs. All
types of saturation and exception handling can be pro-
grammed.

3. ALGORITHMIC MAPPING

The DSP unit design is based strictly on RISC prin-
ciples. Thus, in order to achieve a high processing
throughput, it is necessary to keep this RISC philos-
ophy in mind when an algorithm is implemented. It is
especially important to use the large register �le and
the memory load/store pipelines e�ciently and to make
sure that the ALU and DSP unit execute in parallel
wherever possible.

As an example, consider the inner loop of a FIR �lter
computation where the dot product sn =

PN�1

i=0
cixn�i

of the �lter coe�cients ci and the last N �lter input
values xn�i (�lter history) is computed. Figure 3 shows



LDW.P L15, L11 ; L15 coeff ptr, load two coeff.

LDW.P L7, L12 ; L7 history ptr, load two hist.

MOVD G14, 0 ; clear G14//G15 accumulator

Loop:

LDW.P L15, L13 ; L13 next two coefficients

LDW.P L7, L14 ; L14 next two history val.

ADDI L8, -4 ; decrement loop counter

EHMACD L11, L12 ; halfword mult/acc

LDW.P L15, L11 ; L11 next two coefficients

LDW.P L7, L12 ; L12 next two history val.

DBGT Loop ; delayed branch if L8 > 0

EHMACD L13, L14 ; halfword mult/acc

D=decode, E=ALU execute, W=memory access wait

L=load, S=DSP unit execute

1 2 3 4 5 6 7 8 9 10 clocks

D E W W L

D E W W L

D E

D E S S S S

D E W W L

D E W W L

D E

D E S S S S

D E W W L

Figure 3. FIR �lter inner loop code and pipelined execution

the program code for a sample implementation of this
inner dot product loop and a diagram displaying the
activity of the various units during the execution of
the loop.
The load instructions each fetch two 16 bit numbers

in one 32 bit word. These are processed by the EHMACD
instruction that performs two 16 bit multiplications
and adds the two products into the 64 bit accumulator
G14//G15.
The ADDI and DBGT instructions are used for the loop

control. In each iteration of the loop, four products are
computed and accumulated. Thus, the loop counter is
decremented by four. The ags for the branch instruc-
tion are set by the decrement instruction. Furthermore,
the load/store instructions and the DSP instructions do
not a�ect the condition ags so that a separate check
of the loop counter before the branch instruction is not
necessary.
The pipeline diagram shows how the DSP unit la-

tency cycles (S) are used by the ALU for the loop con-
trol and the data load instructions. Using two sets of
registers (L11, L12 and L13, L14) for the data, the two
load pipelines e�ectively hide the two access cycle mem-
ory latency from the program. In this way, the DSP
unit can be kept busy during the FIR computation.
Using 8 clock cycles per loop iteration, the resulting
throughput of the FIR �lter is two clock cycles per �l-
ter tap.
The subword processing technique used in the FIR

�lter example is illustrated in �gure 4. Four 16 bit
operands located in two general purpose registers serve
as input to the DSP unit. The EHMACD instruction per-
forms two 16 bit multiplications and accumulates the
products using the 64 bit accumulator G14//G15. Al-
ternatively, the EHMAC instruction uses the 32 bit accu-
mulator G15 for the product summation.
This subword processing technique e�ectively en-

ables the parallelism based on latency cycles. While the
DSP unit performs the operation on four subwords, the
ALU and load pipelines perform the instructions neces-

accu = accu + a�c + b�d

63 32 31 0

a b c d
31 16 15 0 31 16 15 0

Register 1 Register 2

?

Figure 4. Subword processing

sary to get the next operands and for the loop control.
Even though the basic architecture is still a single-issue
architecture, di�erent numbers of latency cycles permit
the parallel operation of di�erent units.
For �xed point computations, the DSP unit does not

specify a particular �xed point format. The format is
speci�ed by the programmer. For example, for a �l-
ter computation in 1.15 �xed point format (one sign
bit and 15 bits of fraction giving a numeric range of
�1 � x � 1� 2�15), the accumulation result is shifted
right by 15 places after the accumulation is �nished.
This is done using normal ALU instructions. For a
di�erent �xed point format, the programmer speci�es
a di�erent shift width. Thus, the RISC approach to
DSP gives the programmer additional exibility ma-
nipulating data.

4. IMPLEMENTATION DETAILS AND

PERFORMANCE

The �rst realization of the RISC-based DSP architec-
ture is the E1-32 microprocessor [7]. Using a 0.8 �m
CMOS technology a performance of 60 MHz has been
achieved. The typical power dissipation is less than
0.8 W at a power supply voltage of 5 V. The die size
is 56 mm2 including pads. The E1-32 requires 220,000
transistors in total including 4 KByte on-chip RAM,
96 general purpose 32 bit registers and the 128 byte
instruction cache. Thus, the E1-32 is ideally suited as
a core technology for an ASIC design. Figure 5 shows



Figure 5. E1-32 die photo

a die photo of the E1-32.

The current version of the E1-32 is manufactured
using a widely available 0.8 �m CMOS process. This
version is currently ported to a 0.6 �m process where
clock rates of 80 MHz are achieved. With a port to
0.5 �m and 0.35 �m, clock rates of 120 MHz and above
will be possible [8].

The general purpose microprocessor performance of
the E1-32 has been measured with the Dhrystone 2.1
benchmark suite. Running at 60 MHz a performance
of 97.6k Dhrystones has been achieved [8].

For performance measurements of the E1-32 as a
DSP processor, a number of common DSP benchmarks
have been executed [9]. The following �gures illustrate
the DSP performance of selected 16 bit algorithms run-
ning on a 50 MHz E1-32 using external static memory
for program and data:

1024 point complex FFT: 0.87 ms
100 tap FIR �lter: 4.5 �s
100 tap LMS adaptive FIR �lter: 12.3 �s
8� 8 point 2-dim DCT: 25.2 �s

The FIR benchmarks include the �lter history up-
date as well as all loop control and branching, the adap-
tive �lter includes the FIR �lter computation and the
LMS coe�cient update after each input sample. The
FIR benchmarks use the 64 bit accumulator for the
computation.

As an example illustrating the performance of the
memory load/store pipelines, the FFT benchmark has
been executed with the data in external dynamic RAM.
The 1024 point complex FFT benchmark executes in
0.92 ms in this case. This behaviour illustrates the
advantage of the RISC-based DSP approach over con-
ventional approaches. Even with slow external memory
a very high DSP performance is achieved.

5. CONCLUSION

The RISC concept in combination with an enhanced
functionality for Digital Signal Processing is capable of
surpassing conventional DSP approaches. Especially
in the growing �eld of multimedia and telecommuni-
cation applications, the unique combination of RISC
controller and DSP features o�ers a simpli�ed system
design with high performance at low cost. Due to the
strict RISC philosophy in the DSP unit design, this
concept illustrates a clear roadmap to clock rates of
100 MHz and above.

REFERENCES

[1] K. Nadehara et al., \Low-powerMultimedia RISC,"
IEEE Micro, vol. 15, no. 6, pp. 20{29, 1995

[2] M. Schlett, \A New Way of Integrating RISC and
DSP," in: Proceedings of the 7th International Con-
ference on Signal Processing Applications & Tech-
nology, pp. 653{657, Boston, 1996

[3] M. Dolle, M. Schlett, \A Cost-e�ective RISC/DSP
Microprocessor for Embedded Systems," IEEE Mi-
cro, vol. 15, no. 5, pp. 32{40, 1995

[4] M. Dolle, M. Schlett, \A 32-bit RISC Microproces-
sor with integrated DSP Unit," in: Proceedings of
the 22nd European Solid-State Circuits Conference,
pp. 268{271, Neuchâtel, 1996

[5] A. Peleg, U. Weiser, \MMX Technology Extension
to the Intel Architecture," IEEE Micro, vol. 16,
no. 4, pp. 42{50, 1996

[6] R. Lee, \Subword Parallelism with MAX-2," IEEE
Micro, vol. 16, no. 4, pp. 51{59, 1996

[7] \hyperstone E1-32/E1-16 User's Manual," hyper-
stone electronics GmbH, 1996

[8] M. Dolle, \EURICO: A 32-bit RISC/DSP Micro-
processor for Embedded Systems," in: C. M�uller-
Schloer et al., \Embedded Microprocessor Sys-
tems," IOS Press, pp. 474{482, Amsterdam, 1996

[9] \hyperstone Digital Signal Processing Library Ref-
erence Manual," hyperstone electronics GmbH,
1996

[10] M. Bellanger, \Digital Processing of Signals,"
John Wiley and Sons, New York, 1989


