A PROCESSOR-COPROCESSOR ARCHITECTURE FOR HIGH END VIDEO
APPLICATIONS

Elmar Maas, Dirk Herrmann, Rolf Ernst, Peter Riiffer

Technische Universitat Braunschweig, Germany

maas@ida.ing.tu-bs.de

ABSTRACT

High end video applications are still implemented in hard-
ware consisting of many components. Integration of these
components on one IC is difficult as they are typically low
volume products and often customization is also required,
e.g. in studio applications. This is easier on the board
level than on an integrated system. Using hardware pa-
rameters for customization can partly overcome the flexi-
bility problem with additional hardware costs. Low cost
can be obtained by a change in the architecture paradigm
to a processor-coprocessor system. This, however, requires
careful design space exploration since the performance tar-
get is beyond current DSP processors while at the same
time flexibility is required. The paper presents the applica-
tion of high level synthesis [1] and novel Hardware-Software
Co-Synthesis tools to design space exploration. It is shown
that completely different algorithms can be mapped to the
same target system at much a lower cost than the current
approaches.

1. INTRODUCTION

As of now, real-time computing of high end studio video
applications requires dedicated hardware. Developing ded-
icated hardware is a time consuming and thus an expen-
sive task. Moreover a long development time increases
the time to market. Once the hardware platform is im-
plemented, it is difficult to make changes, but industrial
experience in this low volume market shows that hardware
adaptation to customer needs is required in almost every
design. Thus, flexibility of the hardware platform is a ma-
jor design issue. With our design approach we are tar-
geting at both, reducing development time and cost, and
improving hardware flexibility. This design approach was
employed in an industrial cooperation project. In order
to work on relevant examples, we chose two algorithms,
each representing one of the two extremes in video signal
processing, i.e. demand for computing power and memory
bandwidth requirement. Starting with a specification of
these algorithms in C-language, we used our Hardware-
Software Co-Design environment CosyMA [2] for detailed
design space exploration. In order to be able to use the
CosyMAa system, which was originally developed for design-
ing embedded systems, we defined an architecture template
(figure 1) consisting of a processor and a coprocessor which
are synchronized with the environment by buffer memo-
ries. It is necessary to buffer the fixed rate video I/O to
allow for non-trivial processor-coprocessor design solutions.
CosyMa, along with its high level synthesis (HLS) system
BSS! [3], allowed us not only to do useful code optimiza-
tion but also to efficiently prune the design space to find an

I Braunschweig Synthesis System

Sieghard Hasenzahl, Martin Seitz

Philips BTS, ICC Weiterstadt, Germany
100726.1616@compuserve.com

controller

local memory
Coprocessor buffer o
memory
i -
L puffer ‘shared memory ‘
memory
processor
host interface

Figure 1: System Architecture Template

optimal architecture for the given signal processing tasks.
In the following sections we describe

e our design flow, which is non-standard in the area of
signal processing,

e the requirements that had to be met and

e the design space exploration and final system inte-
gration.

2. DEVELOPMENT ENVIRONMENT

C-language specification |

]

Runtimeanalysis)

Hardware/Software
Partitioning

— N

Software part Hardware part in
inC Harware Description Language
v v
@ High-Level-Synthesis)
__—

Timing
Verification
Executeable Register Transfer level
Code description

Figure 2: The CosyMA Approach to Hardware-Software
Co-Design

Figure 2 shows the CosyMA approach to Hardware-
Software Co-Design: A given C-specification with addi-

tional timing constraints is analyzed and automatically par-
titioned into software and hardware parts. For the software
part, a C-program is generated which can be handled by
standard compilers. The hardware part is translated into a
hardware description language on behavioural level which
is further processed by our HLS-system. BSS generates an
RT-level description which is synthesizeable by commercial
systems like the Synopsys Design-Compiler.

C-language specification

Run time analysis
with Cosyma

Manual Sourcecode

LM emory Partitioning

Transformations

T~

| Optimized C-Model |

Design Space Exploration
with High-Level Synthesis
tool

‘ Minimum Architecture I ‘ RT-level description |

Flexibilization
Final Architecture

Figure 3: Design Flow in the Project

In this project we mainly used the tools from the hard-
ware path highlighted in fig. 2 and shown in more detail
in fig. 3. A signal processing algorithm in C, which was
developed by the industrial partner, was evaluated with
CosyMA. The requirements concerning run time and mem-
ory bandwidth, which will be discussed in detail in the
next section, made manual source code transformations in-
evitable. These transformations were driven by the follow-
ing goals:

e reducing the number of operations,
e reducing the number of memory accesses and
e increasing potential parallelism.

We executed loop merging for pairs of consecutive loops
which performed computations on every pixel of the input
image and thus ran over the same index range. This saved
the evaluation of loop conditions, and since the results of
the first loop could directly be used as an input for the cor-
responding iteration of the second loop, the memory traf-
fic was reduced. As a side effect, potential parallelism for
HLS was increased. This transformation is known from
parallel compilers [4] [5]. Some functions, given as abstract
behavioural descriptions, were rewritten to save operations:
for example, a function for computing the median of five val-

ues, originally implemented by bubble-sorting, was replaced
by a manually optimized solution which (in this function)
reduced the number of comparisons by 56% and swap oper-
ations by 30%. Some source code transformations changed
the number of memory accesses so that an existing mem-
ory partition had to be adapted. After changing the mem-
ory partition, restructuring of the source code often was
required or considered advantageous. The effects of these
transformations on system performance and cost were eval-
uated by the output of CosSYMA’s run time analysis as well
as from the scheduler of its HLS tool. The optimization
steps were iterated until the timing constraints were met
and the number of external memories was minimized. The
outcome of this iterative process was an optimized C-model,
an RT-level description for the coprocessor and a minimum
hardware architecture on board level. The latter was man-
ually extended in order to allow special computation modes
and to make the board reusable for other purposes.?

3. EXAMINING THE SOFTWARE

3.1. Some observations

We selected two applications which are highly relevant in
practice: One is a chroma key (blue screen) algorithm which
requires an extremely large number of computations and
the other is a median noise reducer filter which is char-
acterized by high memory bandwidth. In the beginning,
there was little knowledge of the computational power and
memory bandwidth requirements of these algorithms, as
prior to this project, the complete knowledge of the appli-
cations was hidden in a large number of individually devel-
oped hardware modules. Therefore, the first step was to ex-
tract this knowledge and put it into a software specification.
The result was a software description of the operations on
the hardware platform which was by no means optimal for
a DSP software implementation. It represents one design
point and the aim was to prune the design space. An effi-
cient small processor-coprocessor implementation required
manual algorithmic transformations. The possible number
of transformations is very large and the effect of these trans-
formations on memory bandwidth and performance is not
always easy to anticipate. Thus, design space exploration
starting with a hardware solution is cumbersome.

To get a first impression, we started with a simplified
algorithm to find a potentially useful set of transforma-
tions, a first memory architecture and a coarse estimation of
the required performance. This first version of the chroma
key algorithm was named qad (quick and dirty) since it
was still functionally incomplete but from the viewpoint
of the software designer it represented a coarse measure
for the final version. This algorithm was gradually com-
pleted while the design architect started with the design
space exploration. Figure 4 shows how the requirements of
our two algorithms have changed over a few months. The
data on which the diagrams are based has been created by
CosyMA’s RT-simulator for an L.SI SPARC processor as a
reference under the assumption that all data and programs
were in first level cache. Compilation was done using the
GNU gcce from the Free Software Foundation. Starting with
the first version of the qad in December 1994, we could re-
duce the number of operations by almost one third simply
by performing code transformations such as loop merging,

21t may be noted that reusability represents one aspect of
flexibility.

Performance requirements [Qgﬂw]

35

key key

30

25+

20

15

101

. MNR MNR
i : IDA
5 ad LIDA)
IDA
? ? ? ? ? ? ? ?
Dec.94 Feb.95 Jul.o5 Time in project
Memory Bandwidth [@]

key

27 MNR MNR

IDA IDA
1L
f f f f f f f f
Dec.94 Feb.95 Jul.95 Time in project

Figure 4: Requirements vs. Project Runtime

partial unrolling etc. The optimizations were done with
respect to a processor-coprocessor system and a HLS sys-
tem in mind, i.e. the original structure of the code was
completely destroyed. Both the memory bandwidth and
the performance requirements drastically increased when
the algorithm was completed in the next quarter, the latter
to more than 30 Giga-Operations/s (SPARC-instructions).
One reason for this increase was the introduction of param-
eters for different standards® or to take care of potential
customer requirements. The required computing effort was
not anticipated which indicates that it can be difficult to es-
timate the performance of an algorithm implemented earlier
on a completely different architecture. However, it is im-
portant to know the required computing effort to choose an
appropriate computing platform.

3.2. Considering a DSP Design

In parallel to our Hardware-Software Co-Design approach
we evaluated a software approach. In order to provide as
much flexibility as possible, a solution with a programmable
DSP would have been favorable at first glance. We de-
cided to take one of the fastest DSPs on the market, the
TMS320C80 (MVP) from Texas Instruments [6] [7]. With
its four independent DSPs, a master RISC processor and
25 fast 2kByte memory banks on chip, it provides a peak
performance of 2 GOPs per second. Unfortunately, the
compiler support for the processor is rather poor so that
C-code for this processor has to be rewritten in assembly
language manually if it has to make use of the performance
of the processor. In addition the memory traffic also has

3e.g. image size, background colour etc.

to be scheduled by hand Nevertheless, we mapped the me-
dian noise reducer algorithm to the MVP, which was smaller
and easier to parallelize than the chroma key algorithm. Re-
implementing the 166 lines of code for the MVP took almost
one man month without taking the training period into con-
sideration. Under the assumption of single cycle RAM ac-
cesses, data transfers were performed using the full band-
width of the MV Ps 64-bit bus. However, for the noise filter,
the resulting optimized code was still 1.35 times slower than
required for real-time, assuming a 50 MHz system. It might
have been possible to achieve real-time requirements using
two MVPs but this would have required repartitioning of
the assembly code. In general, what-if analyses for an MVP
system with different parameterization of the code as well
as different hardware constellations prove to be very time
consuming. In contrast, synthesis, which will be described
in the next section, was considerably faster and allowed
more efficient design space exploration.

4. DESIGNING WITH HLS

Our architecture template (figure 1) consists of a proces-
sor and coprocessor. COSYMA’s partitioning goal is to place
big parts of the algorithm onto the software side, which is
executed by the processor, and only smaller and especially
timing critical parts on the coprocessor. Assuming the pro-
cessor is an LSI-SPARC, a speedup of 600(chroma key) or
300(median noise reducer) would be required by partition-
ing parts to the coprocessor. Taking a faster processor,
particularly the MVP, could reduce the required speedups
but communication and code generation cannot be done
automatically with sufficient efficiency for such a kind of
processor. Apart from that we also figured out from the
synthesis results that moving relatively small parts of the
algorithms to software would not significantly reduce hard-
ware costs for the coprocessor but would increase the mem-
ory costs. Eventually the largest part of both algorithms
was implemented in the coprocessor.

As a next step we used high level synthesis not only to
optimize the mapping of the algorithms to the application
specific coprocessor but also to do the design space explo-
ration concerning the board level architecture. Thus, we
had two parallel design goals: minimizing the number of
computing units (i.e. ALUs, multipliers, etc.) on the chip
and finding an optimal number of external memory ports.
This optimization problem has been solved iteratively by
evaluating the scheduling output of BSS. For example a cer-
tain number of ALUs is given to BSS and these ALUs turn
out to be utilized concurrently in large parts of the schedule
but on the other hand memory ports are idle, the number
of ALUs was increased until the ALUs were no longer the
bottleneck. Performing memory port optimization required
a some more creativity: if the schedule revealed that the
memory accesses were the bottleneck, we checked whether
the arrays which were accessed could be partitioned to dif-
ferent memory banks.* If this was possible the introduc-
tion of a new memory port solved the problem. Iteratively
applying algorithmic transformations and changing the pa-
rameters for HLS we were able to find an optimal board level
architecture which suited both the algorithms and had an
optimal number of computing units for the chip.

4Typically, this involved reformulation of the algorithm with
loop splitting while loop merging was used for bandwidth
reduction.

Category mnr key
Run-time [Mcycles] 1.66 1.87
Number of ALUs 9 30

Number of MULs 2 7

Input data stream [MByte/s] 19.77 | 39.56
Output data stream [MByte/s] 19.77 | 29.67
Potential I/O-Bandwidth [MByte/s] | 416 349
Required on board memory [MByte] 7 6.25

Table 1: Final Results for the Coprocessor

The final results for the coprocessor are shown in ta-
ble 1. The algorithms work on full PAL television images
(720x576 pixels), so the coprocessor must consume less than
2 million clock cycles per image at 50 MHz clock rate if real-
time computation has to be achieved:

40ms . 50 M cycles
image s

=2 M cycles

The table shows the minimum numbers of ALUs and
multipliers, which BSS instantiated in the coprocessor, for
real-time computation of the algorithms. Although the
chroma key algorithm is computationally more intensive
than the median noise reducer, the latter needs 20% more
IO-bandwidth for computation. It is also quite interest-
ing to observe that the algorithms need between 500% and
1000% more IO-bandwidth for computing purposes than for
getting data on and off the board. The sum of the memory
bandwidths for each algorithm in Table 1 is slightly above
the values presented in figure 4 because the table shows the
physically provided bandwidths whereas the figure is based
on bandwidths obtained as a result of simulation. This re-
veals that the memory ports of our design are almost used
to capacity.

5. OPTIMIZED BOARD ARCHITECTURE

As discussed in the last section, the major parts of the al-
gorithms are implemented on the coprocessor, so we were
rather free in the processor selection. Finally, we took the
Texas Instruments MVP which potentially allows to per-
form simple algorithms in real-time. This permits the usage
of the prototype board and the MVP programming knowl-
edge for other applications — a matter of knowledge reuse.
Apart from the main algorithmic features, the board was
extended to allow special computation modes: a frame grab
mode permits grabbing a frame out of the processed video
stream and passing it on to the host processor via a PCI
interface. The input buffer memory was implemented as a
double buffer in order to allow MVP non real-time compu-
tation without input overflow. These extensions increased
board flexibility but they almost doubled the number of pins
and wires needed to connect the processors to the memo-
ries. Since the coprocessor would have to be connected to all
memories anyway, the control logic and the switches were
integrated onto it, thus, slightly increasing coprocessor cost
but saving hundreds of pins and wires.

The final architecture is shown in figure 5. The
prototype-board has a size of 185 mm x 311 mm. The
total amount of memory on the prototype board sums up
to 7 MBytes SRAM plus three 256k x 8 bit FTFO memories.
On a commercial board, the SRAMs would be replaced by
highly integrated fast SDRAMs which would reduce both
board size and power consumption.

‘ local RAM_1 ‘ ‘ local RAM_2 ‘ ‘Iocal RAM_3 ‘
T

in-RAM_1

cross-switch

out-FIFO | -©

|
|

control / switches

|—‘{ shared-memory

Figure 5: Final Board Architecture

PCI host interface

s

6. CONCLUSIONS

We have shown that by using high level synthesis in the con-
text of Hardware-Software Co-Design for fast design space
exploration, a well suited hardware solution for several dif-
ferent applications can be found in a comparatively short
period of time. Thus, development costs and time to market
could be significantly reduced in future.

An important aspect was the role of flexibility. We
found that the flexibility to be able to do “minor” (from
the viewpoint of the software developer) changes within
the specification could easily double system requirements
(section 3.1). With respect to parameterization of the algo-
rithms, which can also be regarded as flexibility , the study-
ing of a competitive DSP solution (section 3.2) revealed that
the software approach is not by definition flexible, as well as
hardware is not completely inflexible. The implementation
of the prototype brought up a third flavour of flexibility,
that is the reuse of a design for other than the original pur-
poses. All these manifestations of flexibility had certain
impact on the design and eventually increased costs. Flex-
ibility is a relevant factor in a system optimization process
and will become more important with an increasing level of
integration. It may be noted that designing for flexibility
requires a more precise or even formal definition of what it
actually is.

7. REFERENCES

[1] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin.
High-Level Synthesis - Introduction to Chip and System
Design. Kluwer Academic Publishers, 1992.

[2] R. Ernst, J. Henkel, and Th. Benner. Hardware-
software cosynthesis for microcontrollers. IEEE Design
& Test of Computers, pages 64-75, December 1993.

[3] U. Holtmann and R. Ernst. Combining mbp-speculative
computation and loop pipelining in high-level synthesis.
In ED&TC’95, pages 550-555, 1995.

[4] U. Banerjee. Loop Parallelization. Kluwer Academic
Publishers, 1994.

[5] D. E. Hudak and S. G. Abraham. Compiling Parallel
Loops for High Performance Computers. Kluwer Aca-
demic Publishers, 1993.

[6] Texas Instruments, Inc. TMS820C80(MVP) Online
Documentation Reference Set, 1994.

[7] Texas Instruments, Inc. TMS320C8z System-Level Syn-
opsys., 1995.

