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ABSTRACT

This paper describes an MPEG-2 encoder architecture based
on a hard-wired LSI with a control MPU. All basic functions
of MPEG-2 MP@ML video compression are integrated in
the dedicated LSI. For the motion estimation, a horizon-
tally subsampled, diamond search was employed as a sim-
pli�ed �rst search step. It can reduce operations to 20% of
the full-search, with an estimated SNR degradation of only
�0:1dB. To help achieve a single-memory interface, a pair
of 81MHz, 16Mb SDRAMs are used as a frame bu�er and
a code bu�er. Data bandwidth between the SDRAMs and
the LSI is kept to less than 94% of the maximum data rate.
Jobs assigned to the control MPU need be executed less fre-
quently than those of the macroblock coding, which helps
reduce the requirements for MPU performance to about
7MIPS.

1. INTRODUCTION

The MPEG-2 algorithm [1] is generic in the sense that mul-
timedia applications in several di�erent �elds take advan-
tage of this technology. Since 1994, the year that the Draft
was approved as the International Standard (IS), a num-
ber of MPEG encoding LSIs have been reported [2, 3, 4, 5].
Unlike MPEG-2 decoders, conventional encoding systems
include multiple VLSI chips and several kinds of memory
LSIs. The die size of the chips is not suitable for low-cost
mass production, however, a critical limitation for future
personal encoding applications. In addition, their power
dissipation is not low enough for portable use.

This paper describes a single-chip video encoder LSI
that performs all basic functions of MPEG-2 video com-
pression. After describing the speci�cations of the LSI, we
review three critical topics related to the single-chip integra-
tion: a simpli�ed motion estimation algorithm, reduction
of the memory bandwidth in a single memory architecture,
and reduction of the coding control performance required
of the associated MPU.

2. OVERVIEW OF THE VIDEO ENCODER LSI

A block diagram of the video encoder LSI is shown in Figure
1. The LSI consists of a system control (SYS) unit; a mo-
tion estimation (ME) unit; a block processing (BP) unit for

DCT, quantization, and other numerical operations; a vari-
able length coding (VLC) unit; video input/output (VI/VO)
units; a host interface (HIF) unit connected to the con-
trol MPU; a synchronous DRAM (SDRAM) interface (SIF)
unit; and a packet generation (PG) unit.
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Figure 1: Block diagram.

The SYS unit is the main control unit for video cod-
ing operations. Start signals for each unit are generated
to manage a macroblock-pipeline timing scheme. The unit
also handles commands issued by the control MPU. Typical
commands are: encode, stop (for encoding), capture, dis-
play (for video input/output), and SDRAM power-down.

In the ME unit, a simpli�ed, local-decode-based two-
step search algorithm is adopted to help reduce required op-
erations and memory bandwidth, as will be described later.
The BP unit incorporates a mixed-pixel-pipeline scheme
in the macroblock execution period, providing 2-pel/cycle
DCT/IDCT operations and 1-pel/cycle Q/IQ operations.
The VLC unit generates either an MPEG-1 or MPEG-2
bitstream.

The VI unit has a 6-tap 4:2:2 to 4:2:0 chrominance
down-sampler, an ITU-R 601 to SIF converter, and a tem-
poral noise reducer. The VO unit generates monitor out-
put to evaluate the coded picture quality. It also has up-
sampling converters and �lters.

The PG unit outputs a system bitstream. It attaches



stream headers, which had been stored in SDRAMs and
updated by the MPU, to the streams of audio and video.
It also inserts Clock Reference �elds into a merged au-
dio/video stream.

While most of the units operate at 54MHz, the VI/VO
units operate at 13.5MHz. To maintain high-speed transfer
of video data and codes, SDRAMs are controlled by the
SIF unit to operate at 81MHz (12.3ns) cycle, and this unit
issues continual, 3-cycle latency SDRAM cycles.

3. SIMPLIFIED MOTION ESTIMATION

One of the key issues in designing an MPEG-2 video encoder
LSI is to reduce the complexity of the motion estimation. A
full-search block matching algorithm in a large search area
involves considerable computation as well as high memory
bandwidth. While several simpli�ed motion vector search
algorithms have been proposed [6, 7, 8, 9], none of these
proposals discusses its e�ectiveness in MPEG-2 MP@ML
video encoding, the area most in need of discussion.

In our approach, we �rst listed a set of algorithm prim-
itives that can reduce the number of operations. We classi-
�ed these into three categories:

1. 2-to-1 subsampled searches after interpolation (LPF):
full-search(F)/horizontal(H)/+vertical(V)

2. search point reduction:

full-search(F)/diamond(D)/checkered(C)

3. narrowing down the reference �elds of the 2nd search:

ftop,bottomgffor,backg(4)/ffor,backg(2)/(1),

in which the diamond search uses a rhombic search win-
dow whose area is half of the original rectangle, and the
checkered search uses 2-to-1 subsampled, skew grids for the
reference picture.

The algorithm primitives are then combined to form a
complex algorithm, abbreviated as 'HC2' in reference to
the horizontal/checkered primitives above. Search points
for 'HFn' and 'FCn' are shown in the example, illustrated
in Figure 2. Note that reducing search points of the �rst
search step (white circle) leads to an increase of the second
half-pel search points (black circle).

1 pel 1 pel

(a) HF/HD type (b) FC type

Figure 2: Examples of simpli�ed ME algorithms.

We have also examined how the reduction of motion es-
timation complexity a�ects the quality of the compressed
video, considering the trade-o� of ratio of operations (nor-
malized as 'FF4'=1) versus SNR degradation from 'FF4'
(Figure 3). Four sequences (Cheer, Mobile, Bicycle, and

Flower) were simulated under the following conditions:
4Mbps, bidirectional predictions (m=3, and n=15), searches
within �16 pixels per frame, and sequences of 60 NTSC
frames each.
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Figure 3: Ratio of operations v.s. SNR with simpli�ed MEs
(bidirectional predictions, m=3).

Figure 3 shows degradation when the V algorithm prim-
itive in the �rst category is used. The C primitive in the
second category fails to �nd the best match in some se-
quences. While there are no such clear-cut di�erences in
the third category, in terms of SNR degradation, they are
not, nevertheless, as to be negligible. We performed similar
tests for the dual-prime prediction (Figure 4).
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Figure 4: Ratio of operations v.s. SNR with simpli�ed MEs
(dual-prime predictions, m=1).

We concluded from these results that (1) only subsam-
pling in the horizontal direction is permissible, (2) reducing
search points for oblique vectors works e�ectively, and (3) as
many the �eld-based second searches should be performed
as possible. We employed 'HD4' for bidirectional prediction
and 'HD2' for dual-prime prediction, each of which provide
20% of the computations of the full-search and produces at
most -0.1dB SNR degradation. These results are superior to
[9], in which 'VF4' is employed and the SNR degradation is



estimated to be -0.2dB. (Our results for 'VF4', obtained for
nearly the same number of operations as for 'HD4', con�rm
this �gure.)

Our main concern here is circuit design, especially the
e�ectiveness of diamond search design. To overcome hard-
ware restrictions, we divided the search window into multi-
ple rectangular segments over the rhombus (Figure 5). We
have designed an array of ME processing elements so that
that e�ciency of operations approaches 100% [10]. In addi-
tion, the height and the vertical position of segments in our
design can, if necessary, be changed. A optional window
shift control is also added to follow out-bounded motion
vectors.
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Figure 5: Segmented search window (P-picture, m=3).

4. SINGLE MEMORY ARCHITECTURE

An example of the MPEG-2 encoder system con�guration
using the video encoder LSI is shown in Figure 6.
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Figure 6: System con�guration.

To achieve a single memory architecture, we used two
16Mb SDRAMs as a frame bu�er and a code bu�er. The
memory bandwidth is modeled as ClockRate�4(byte=word)�
, where  is the e�ciency of burst SDRAM accesses and
is here assumed to be 0:8. Since 81MHz SDRAMs (3 times
the 27MHz system clock rate) are used, the limit of the
memory bandwidth is 259MB/s.

To estimate memory bandwidth, we roughly classi�ed
thememory accesses intoME reference accesses and \other",
which consists of an external video input, a read for video
encoding, a write for decoded picture for prediction, an ex-
ternal video output, and a video read for noise reduction.

Note that these �ve all have the same rate and their total
may be given as (720� 480� 30 � 1:5)� 5 = 77:76MB/s.

ME reference accesses consist of the �rst search refer-
ence read, the second search reference read, and a prediction
read. We need six times the luminance video data rate to
fetch a �16 vertical area in the bidirectional �rst search,
which involves 720 � 480 � 30 � 6 = 62:21MB/s. We also
need more than six times the luminance video data rate
to fetch two bidirectional frame candidates and four bidi-
rectional �eld candidates in the second search. The grand
total, then, is over 200MB/s.

In addition, memory alignment restrictions and unavoid-
able margins push up this estimate, which makes it hard
to conduct all transactions within 259MB/s. For this rea-
son, we decided that the �rst search should be made on
the local decode picture to reduce the number of memory
transactions, and in additional simulations we were able to
con�rm that the SNR degradation produced by this restric-
tion is negligible.

In SDRAM arbitration, we used a simple circulating al-
gorithm for SDRAM access scheduling (Figure 7). Further,
in actual implementation, we were able to keep the band-
width between the SDRAMs and the video encoder LSI to
less than 94% of the maximum data rate (Figure 8).

F F F F B B B B

I O I O I O I O

Y C

L L L

bitstream in/out I I I O

macroblock period (0.024 ms)

F B

video in/out

search picture (Y/C)

reference Y 
(for/back)

reference CbCr (for/back)

local decode picture

Figure 7: SDRAM access scheduling.
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Figure 8: Ratio of SDRAM bandwidth.

5. CODING CONTROL BY THE MPU

The computation requirements for video encoding are enor-
mous; even after our simpli�cation of the ME algorithm, we
still need a performance of 30GOPS, of which 28GOPS are
for motion estimation. Since VLC operations alone con-
sume 100MOPS in the worst case, the control MPU can
hardly be expected to play a main part in MPEG-2 video
encoding algorithm execution.



In our design, jobs assigned to the control MPU need be
executed less frequently than those of the macroblock cod-
ing, which helps reduce the requirements for MPU perfor-
mance. It calculates parameters for bu�er control, activity
control, search control, and bitstream headers. Audio code
transfer is also a part of MPU processing.

MPU performance in these real-time controls is esti-
mated at about 7MIPS (Table 1), which means that a mid-
class RISC will have su�cient performance for our pur-
poses. Any extra computation ability can also be used for
video quality improvement and power reduction of the ME
unit.

Table I: MPU Performance Estimation

Processing

Audio Code
Transfer

Rate Control
per Slice

Others
per Picture

Frequemcy
of the MPU

Performance
(times/s) (MIPS)

Step Count

< 50,000

900

30

112

< 1,100

< 2,900

< 5.6

< 0.99

< 0.09

< 6.68Total

Figure 9 is a timing diagram of picture tasks. In our
estimates, we assumed a 33MIPS RISC. The MPU is trig-
gered by video interrupts to accomplish concurrent process-
ing with the video encoder LSI.
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Figure 9: Timing diagram of the picture tasks.

6. CONCLUSION

We have presented here an MPEG-2 encoder architecture
based on a dedicated LSI with an MPU. The video encoder
LSI integrates 3.1M transistors on a 12:45mm � 12:45mm

die in 0.35�m three-metal-layer CMOS (Figure 10). The
chip consumes 1.5W at 3.3V (2.5V for the ME unit) and at
a 54MHz internal clock [10]. With reduced chip count and
the use of a mid-class MPU, we are able to achieve both
system cost-down and system power reduction.
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Figure 10: Photomicrograph of the video encoder LSI.
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