
AN EFFICIENT AND RECONFIGURABLE VLSI ARCHITECTURE

FOR DIFFERENT BLOCK MATCHING MOTION ESTIMATION

ALGORITHMS

Xiao-Dong Zhang

Dept. of EE

University of Sci. and Tech.

AnHui, HeFei. P.R. China

Chi-Ying Tsui

Dept. of Electrical and Electronic Engineering

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

Abstract| This paper describes a VLSI archi-

tecture which can be recon�gured to support

both Full Search Block{Matching algorithm and

3{step Hierarchical Search Block{Matching al-

gorithm. By using a recon�gurable register{

mux array and a parameterizable adder tree,

the 2{D array architecture provides e�cient real

time motion estimation for many video applica-

tions. We also propose a memory architecture

and an associated switching network to solve the

simultaneous data access problem.

1. INTRODUCTION

Motion estimation algorithms play an important role
in video compression. Block matching algorithms are
the most commonly used algorithm and several VLSI
architectures have been proposed for di�erent algo-
rithms. These include architectures for full search
block-matching algorithms (FBMA) [1],[2],[3] and ar-
chitectures for 3{step hierarchical search block match-
ing algorithms (HSA) [4],[5],[6].

Di�erent video applications may need to adopt dif-
ferent motion estimation algorithms. Therefore, it will
be better if we can have an architecture that can sup-
port di�erent algorithms and operation conditions, and
also can be recon�gured in real time. In this paper,
a recon�gurable, low{latency and high throughput 2{
D array architecture is presented. Using the notion of
Register{Multiplexer Array (RMA) and Recon�gurable
Adder Tree (RAT), the architecture can cater for irreg-
ular block matching and is able to cover both HSA and
FBMA e�ciently. Comparing with other 2{D systolic
array architectures, the data skew in the data ow is
minimized. This can signi�cantly reduce the latency
and the number of idle cycle. At the same time the
power consumption is also reduced. On-chip memory
and switching network are used to solve the simultane-
ous data access problem. By using this switching net-
work, the computation of Mean Absolute Di�erences

(MADs) can be begun at any row. Also the architec-
ture has the exibility to handle various block sizes.

2. BLOCK MATCHING ALGORITHMS

The purpose of the block matching algorithm is to
�nd a best matched displaced block within a search
range from the previous frameFt�1 for each N�N block
in the current frame Ft. FBMA exhaustively matches
all possible candidates in the search range to �nd the
displacement (motion vector) with a minimaldistortion.
As a criterion of measuring distortion, the mean abso-
lute di�erence (MAD) is calculated for each candidate
(u; v) as follows:

MAD(u; v) =
N�1X

l=0

N�1X

m=0

jax+l;y+m � bx+l+u;y+m+v j (1)

where (x; y) is the coordinate of the left-top pixel of the
current block in Ft, ax;y and bx;y are the values of pixels
in Ft and Ft�1, respectively, and the values of u and v

are limited to between �p to p�1 where p is the search
range.

To reduce the heavy computational cost resulting
from the massive number of candidate locations, HSA
searches for the near best motion vector in a coarse-
to-�ne manner. In the �rst step, nine sparsely located
candidates are evaluated and the one with the minimum
MAD is picked out. In the second step, the search is fo-
cused on the area centered at the winner of the previous
step, but distances between candidate locations are re-
duced by half. In a similar manner, step three compares
the MADs of the nine locations around the winner of
the second step and then gives the �nal motion vector.

3. THE PROPOSED ARCHITECTURE

Figure 1 is the overall block diagram of the pro-
posed architecture. It consists of a Process Element
Array (PEA), on{chip memories for current and previ-
ous block data, a Register{Multiplexer Array(RMA) for

previous frame pixel data ow, a Recon�gurable Adder
Tree (RAT) for parallel computation of the MADs, an
address generator and a controller.

The PEA is composed of 3 � 16 PEs (Figure 2).
These PEs are divided into three rows and 16 columns.
Each row is responsible for calculating the MAD for
a candidate block during the block matching. So it
takes 16 cycles for each row to complete all the abso-
lute di�erence computations for one MAD calculation
and 3 MADs are calculated at the same time. The pre-
vious data are input to the PEs through the RMA. The
RMA is used to minimize the memory bandwidth or
the number of banks used in the on-chip memory. The
connection between PEA and RMA is shown in Figure
3. Search area data is input to the top register and is
shifted into the register array. When the lower three
registers are full, the computation starts. At each com-
putation cycle, the RMA provides three di�erent search
area data for the three PEs of each PE column. At the
same time, the Current Block Area's on{chip memories
provide a current block data for each PE column. Each
PE cell computes the absolute di�erence of its two in-
puts and outputs the result to its corresponding adder
in the RAT. The RAT is a pipelined adder tree which
computes the sum of the 16 absolute di�erences (Figure
4).

The proposed architecture uses the Register{Memory
Array (RMA) to bu�er the data from the search area
memory to the PEA. It consists of 16 columns, each col-
umn has 6 registers and 3 2{to{1 multiplexers. These
registers are divided into two groups, high and low
groups. The data from the search area's on{chip mem-
ory enters at the top of these register groups and shifts
through them cycle by cycle. The multiplexers select
the data from the right register group and feed them
into the corresponding PEs in the PE column. The
operation can be con�gured for both 3{step HSA and
FBMA (Figure 5).

For 3{step HSA, the multiplexers select data from the
low register group. In each step, the 9 candidate block
matching positions are divided into 3 row. The MADs
of the candidate blocks in the same row are computed si-
multaneously by the three PE rows. The on{chip mem-
ory outputs data into the register array in an interleav-
ing order to make sure that the data will be shared in
the computation. In step one the distance of the search
data input to the PEs in the same column is 4. For ex-
ample, at the �rst PE column the computations at the
�rst cycle for the 3 PEs are ja1;1� b5;5j, ja1;1� b9;5j and
ja1;1 � b13;5j where ai;j and bm;n are the current block

data at location (i; j) and search area data at location
(m;n), respectively. So the interleaving data order is:
5,9,13,17,21,25,6,10,14,18,22,26,7,11,15,19,23,27,8,12,
16,20,24,28. For step two the interleaving data order
is: 3,5,7,9,11,13,15,17,19,21,4,6,8,10,12,14,16,18,20,22.

For the step 3 of HSA, it is similar to the con�g-
uration for FBMA. Each row of the PE array is re-
sponsible for calculating the MADs of three adjacent
candidate blocks. The high and low register groups
will be used alternatively to minimize the idle cycles
required to �ll up the register array. When one group
is outputting data to the PE arrays, the other group is
storing the search data for the next three MADs com-
putations. For example, when b1;1; b2;1; b3;1 are shifted
in the low register group, the computation of the �rst
three MADs begins. The search data will be continu-
ously shifted into the register array in a sequential man-
ner. When b4;1; b5;1; b6;1 are shifted in, they are also
shifted in and stored in the high register group. After
16 cycles, the �rst three MADs' computations are �n-
ished and the next three computations begin with the
search area data b4;1; b5;1; b6;1 which are now available
from the high group. Therefore the computations can
start immediately without waiting for the data to shift
in from the memory. The idle cycle between each MAD
computation is minimized and the performance of the
architecture is improved.

Comparing with the other array architectures
[2],[3],[4],[6], the PE elements used here only calculate
the absolute di�erence of two pixels and are much sim-
pler. The area cost of the PE and the adder used in the
RAT can be reduced by having a simpler and slower de-
sign. On the other hand, we can also reduce the power
consumption. The power consumption of a CMOS cir-
cuit is mainly due to the dynamic power consumption
which is used to charge and discharge the capacitance.
For a circuit element n, the dynamic power Pn is equal
to

Pn = CnLV
2
ddfd (2)

where CnL is the e�ective switching load capacitance
of n, fd is the operating frequency, and Vdd is the sup-
ply voltage. For the proposed architecture, the critical
path of a pipeline stage is either that of the adder in
the RAT or that of the PE. For the other array archi-
tectures, the critical path is the sum of the delay of
the adder and absolute di�erence. For a �xed through-
put requirement, the proposed architecture can a�ord
to have slower adders and PEs. It means that lower
supply voltage can be used and signi�cant power reduc-
tion can be achieved since power is proportional to the
square of Vdd. Moreover dynamic power consumption

also depends on the switching activity of the circuit. It
is shown that an adder tree structure has much smaller
switching activity and the power consumption is less
than 50% of that of the traditional array structures[7].

4. THE MEMORY ARCHITECTURE

During the block{matching, most pixels are used sev-
eral times to evaluate di�erent candidate locations. To
lower the I/O bandwidth requirement, on{chip memo-
ries are used in the proposed architecture. For block
size N and maximum displacement p, 3

2
(N + 2p � 1)2

bytes and 2N2 bytes on{chip memories are used for
search area and current block data, respectively, to re-
alize zero waiting between adjacent block matchings.
The search area memory are divided into 3 modules
and each module has 16 banks. The organization of the
search area memory is shown in Figure 6-8. During the
computation, the search area memory provides 16 pixels
in a column to each PE row for the MAD calculation.
Each pixel in the column comes from consecutive mem-
ory rows and hence di�erent memory banks. The use
of memory bank provides simultaneous access of data,
however it stipulates that every PE column be able to
access each of the 16 memory banks. This is solved by
using a switching network which can rotate the connec-
tions between the memory banks and PE columns in a
required order. The network consists of N� logN (16
� 4) 2{to{1 multiplexers as shown in Figure 9.

5. FLEXIBILITY FOR DIFFERENT BLOCK

SIZE

Using the RAT, the proposed architecture has the
exibility to cater for di�erent block sizes for FBMA
(Figure 4). When the block size is 16 � 16 or 8 � 16,
the full adder tree is used to calculate the MAD and
the partial result are accumulated in the Accumulator
Accu1;j. After 16 or 8 cycles, a MAD is computed and
output to the Comparator Comp1;j for comparison with
the previous minimum. For block size of 8�8 and 8�16,
the adder tree is split into two subtrees and the partial
results from the two sub-trees are accumulated in the
Accumulators Accu1;j and Accu2;j, respectively. After
8 or 16 cycles, two MADs belonging to two neighboring
current blocks are computed and output to the Com-
parators Comp1;j and Comp2;j, respectively.

6. PERFORMANCE ANALYSIS AND

COMPARISON WITH EXISTING

ARCHITECTURES

The performance of the proposed architecture for a
16 � 16 block size, maximum displacement 8, 3{step
HSA is as follows. For step 1, we need to shift in 24

search area data into each PE column for the MAD
calculation. After the computation of all 3 rows of can-
didate blocks is �nished, we need another extra 7 cycles
for the RATs and the comparators to produce the ad-
dress for the next step search. The total cycle required
is 24 � 3 + 7 = 79. For step 2 and step 3, the proce-
dure is similar except that the numbers of search data
needed to be shifted in are 20 and 18, respectively. So
the cycles required for step 2 and 3 are 67 and 61, re-
spectively, and the total number of cycles required is
207.

For FBMA, due to the use of the high and low reg-
ister group, it only takes 16 cycles to compute the
MADs for 3 adjacent candidate blocks except for the
�rst three blocks which need extra 3 cycles to shift the
initial data into the register array. So the cycle re-
quired to compute MADs for a row in the search area is
T0 = 3+16�d2p

3
e = 99 for p = 8. The total clock cycles

required for the full block matching is T0�2p+7 = 1591.

Comparing with existing architectures, the proposed
architecture has higher performance and exibility for
various block sizes, lower cost, lower power consump-
tion and can e�ciently cover both FBMA and 3{step
HSA. The comparisons with existing architectures are
summarized in Table I.

References

[1] T. Komarek and P. Pirsch. Array architectures for block

matching algorithms. In IEEE Trans. Circuits Syst., vol-

ume 36, pages 1317{1325, Oct 1989.

[2] L. De Vos and M. Sch}obinger. Parameterizable VLSI ar-

chitectures for the full{search block{matching algorithm.

In IEEE Trans. Circuits Syst., volume 36, pages 1309{

1316, Oct 1989.

[3] K. M. Yang, M. T. Sun, , and L. Wu. A family of VLSI

designs for the motion compensation block{matching al-

gorithm. In IEEE Trans. Circuits Syst., volume 36,

pages 1317{1325, Oct 1989.

[4] H. M. Jong, L. G. Chen, and T. D. Chiueh. Parallel ar-

chitecture for 3-step hierarchical search block{matching

algorithm. In IEEE Trans. Circuits Syst. For Video

Technology, volume 4, pages 407{416, Aug 1995.

[5] Y. S. Jehng, L. G. Chen, and T. D. Chiueh. A motion

estimator for low bit{rate video codec. In IEEE Trans.

Consumer Elelctronics, volume 38, May 1992.

[6] Z. L. He, M. L. Liu, P. C. H. Chan, and R. Li. An e�cient

VLSI architecture for new three-step search algorithm.

In Proc. of Midwest Symp. on Circuit and Systems, Rio

de Janeiro, Aug 1995.

[7] H. Chan and C.Y. Tsui. Exploring the power con-

sumption of di�erent motion estimation architectures for

video compression. In HKUST Dept. of EEE Technical

Report.

S2

S3

S4

S1

 2:1

Mux

Mux

 2:1

Reg3,k

Reg1,k

Reg2,k

Mux
 2:1

Search Area Data

Reg3,k

Reg2,k

Reg1,k

Reg3,k

Reg2,k

Reg1,k

Reg3,k

Reg2,k

Reg1,k

Reg6,k

Reg5,k

Reg4,k

Reg5,k

Reg4,k

Reg6,k

Reg5,k

Reg4,k

Search Area Data

Reg6,k

MUX

D 9,1
D 2,0
D 1,0

MUX

D 8,2

D 9,2
D 1,1
D 2,1

D 8,2

MUX

MUX D 8,3

D 9,3
D 1,2
D 2,2

MUX

MUX D 8MUX

D 9
D 1,3
D 2,3

MUX

D15,3
D16,3

D15, 0
D16, 0

D15,1
D16,1

D15,2

D 1,1
D 2,0
D 1,0

MUX D 1,2
D 1,1
D 2,1

MUX D 1,3
D 1,2
D 2,2

MUX D 1
D 1,3
D 2,3

MUX

Column 1 Column 2

 2:1

Column 4

D 16,1MUX D 16,2MUX MUXD 16,3MUX D 16
D15, 3
D16, 3

D15,0
D16,0

D15,1
D16,1

D15,2
D16,2

Bank 15

Bank 16

Row 31

D16,2

D 15

D 16

16 16 16

3
2

3
2

3
2

Module 1 Module 2 Module 3 MUX
D 1

D 16
MUX

(lo
g
 w

 x
 w

 2
:1

 M
U

X
)

S
w

itch
 N

etw
o
rk

Bank 1

Module 3

Module 1

Bank 1

Bank 1

Module 2

Module 1

Module 3

Module 2

Bank 16

Bank 16

Bank 16

Fig 8 Memory organization
of search area data

Bank 2

Bank 1

Row 2

Row 1 D 1

D 2

Row 17

Row 18

Fig 6 Memory structure of search area

Fig 7 Structure of search
area module

Mux

48

768

9 16 48 16 256 128 64

30k 13k 192k 155k 136k

1870 4096 256 512 1024

794 3114 230

1280 768 768 768

PE Number

Gate Number

Timing (FS)

Timing (TSS)

External data
access times

/ Block Matching

 11520

32.9k13.6k

1280

204

24k

1591

Archi.Archi.Archi.Archi.Archi.
Archi.

Proposed

*

in[4] in[5] in[6] in[3] in [2]

Mux
 2:1
Mux

 2:1

Column 3

Row 15

D1,j
Adder
1,1,j

D2,j

Adder
2,1,j

Adder
1,2,j

D3,j

D4,j

D13,j

D14,j Adder
1,7,j

D15,j

D16,j Adder
1,8,j

Adder
2,4,j

D9,j

D10,j Adder
1,5,j

Adder
2,3,jD11,j

D12,j Adder
1,6,j

Adder
1,3,j

D5,j

D6,j

Adder
2,2,jD7,j

D8,j Adder
1,4,j Adder

4,1,j

Adder
3,1,j

Adder
3,2,j

Row 16Row 32

S5 Accu. Comp.
1,j 1,j

Accu. Comp.
2,j 2,j

Reg6,k

Reg5,k

Reg4,k

Reg3,k

Reg2,k

Mux
2:1

Mux
2:1

Mux
2:1

H
ig

h
 G

ro
u
p

L
o
w

 G
ro

u
p Reg1,k

Search Area Data

PE1,k

PE2,k

PE3,k

Current Block Data
Column k of PEA

Column k of RMA

PE PE

R
o

w
 2

PE

 1

 2

 3

RAT

RAT

RAT

PE PE

R
o
w

1

Column 1 Column 2

PE

Column N

PE PE

R
o

w
 3

PE

Fig 2 The PEA structure Fig 3 Connection between
the PEA and the RMA

RAT()

for 3-step HSA and FBMA
Fig 5 Configuration of the RMA

For FBMA

Fig 9 Switching network for the search area data

Fig. 1 The block diagram of the proposed architecture

Off-Chip Memory

Controller

Off-Chip Memory

PE Array

Register-Mux Array

On-Chip Memory Address Generator

Comparator

Current Block Data
On-Chip Memory

Current Block Data

Search Area DataSearch Area Data

Table I Comparison between the proposed architecture
and existing architectures
(* Not include on-chip Memory)

 For 3-step HSA

Fig 4 RAT for the PEA row j

Reconfigurable Adder

Tree

