
THE FFT BUTTERFLY OPERATION IN 4 PROCESSOR CYCLES ON A 24 BIT

FIXED-POINT DSP WITH A PIPELINED MULTIPLIER

Martin Grajcar, Bernhard Sick

University of Passau, Faculty for Mathematics and Computer Science (Prof. Dr. W. Grass)
Innstr. 33, D { 94032 Passau, Germany
email: (grajcarjsick)@fmi.uni-passau.de

ABSTRACT

Most of the existing Digital Signal Processors (DSPs)
are optimized for a fast and e�cient computation of
the Fast Fourier Transform (FFT). However, there are
only two
oating-point DSPs available, which perform
the butter
y operation of a FFT in 4 processor cycles,
but no �xed-point DSP is designed that way. The new
24 bit �xed-point DSP DAISY, which is able to exe-
cute the butter
y in 4 cycles even using a two-stage
pipelined multiplier, is described in this paper. With
this pipelined multiplication it is possible to reduce the
processor cycle time signi�cantly.

1. INTRODUCTION

The FFT is an important tool used in many signal
processing applications, e.g. for the analysis of the fre-
quency or the cepstral domain of digital signals. There-
fore the developers of DSPs include features in their
designs that support an e�cient real-time computation
of this algorithm. An often used FFT algorithm, the
radix-2 decimation-in-time (DIT) in-place FFT, will be
considered in this paper (see e.g. [1]).

A[j]

A[i]

A[j]’ = A[j] + A[i] * W

A[i]’ = A[j] - A[i] * W

(A[i], A[j], W
are complex
numbers)

Figure 1: Radix-2 butter
y operation

A 2x-point FFT mainly consists of x � 2x�1 executions
of the butter
y operation (see �g. 1). This butter
y
can be written by means of real numbers in the follow-
ing way:

A[i]0re = A[j]re � (A[i]re �Wre � A[i]im �Wim)
A[j]0re = A[j]re + (A[i]re �Wre � A[i]im �Wim)
A[i]0im = A[j]im � (A[i]re �Wim +A[i]im �Wre)
A[j]0

im
= A[j]im + (A[i]re �Wim +A[i]im �Wre)

The indices re and im refer to the real and the imag-
inary part of a complex number. Wre and Wim (the
twiddle factors) are cosine and sine values. The compu-
tation can be done `in place', i.e. the values of A[i] and

A[j] are overwritten after the completion of one but-
ter
y (indicated with 0). Fig. 2 shows the
ow graph
of an 8-point FFT.

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

(000)

(001)

(010)

(011)

(100)

(101)

(110)

(111)

(000)

(100)

(010)

(110)

(001)

(101)

(011)

(111)

stage

group

Figure 2: Flow graph of an 8-point FFT

In each stage, butter
ies with identical twiddle factors
are grouped together (recognizable by the same type
of connection). A 2x-point FFT consists of x stages.
The number of groups is doubled in each stage, while
the number of butter
ies per group is halved. So, the
number of butter
ies per stage is a constant, 2x�1. The
output array of the FFT is in a `bit-reversed' order.

2. HARDWARE REQUIREMENTS

A direct implementation of the butter
y requires 4
multiplications, 6 additions (or subtractions), 12 mem-
ory accesses on array elements (A[i] and A[j] are
read/written twice and the twiddle factors could be
held in registers) and (preparing the next butter
y)
two modi�cations of array indices. Therefore, with the
restriction to use only one hardware multiplier, a but-
ter
y could be executed in 4 processor cycles. But
as a consequence of data dependencies, several butter-

ies have to be computed overlapping each other (thus,
4 cycles is an average). Tab. 1 shows some bench-
marks for a FFT (`cycle' means the execution time for
a simple assembler instruction, `minimal code length

of a butter
y' refers to nontrivial butter
ies in which
multiplications cannot be eliminated (e.g. in the �rst
stage no multiplication is required due to Wre = 1 and
Wim = 0). The DSP56000 family is the only commer-
cial 24 bit �xed-point DSP family; solely the
oating-
point families DSP96000 and ADSP-21000 are able to
execute the butter
y in 4 cycles.

optimization, execution minimal code length

[algorithm time (in of a butter
y / FFT

reference] 1000 cycles) (in words)

Texas Instruments TMS320C50 (�xed-point 16 bit)

n.a., [2] 82.8 18 / n.a.

Motorola DSP56001 (�xed-point 24 bit)

code length, [3] 63.8 6 / 40

time, [3] 33.6 6 / 105

DAISY (�xed-point 24 bit)

code length, [4] 29.8 4 / 37

Texas Instruments TMS320C30 (
oating-point 32 bit)

code length, [5] 64.6 9 / 60

time, [5] 39.4 7.275 / 229

Motorola DSP96002 (
oating-point 32 bit)

code length, [3] 31.2 4 / 30

time, [3] 21.0 4 / 137

Analog Devices ADSP-21020 (
oating-point 32 bit)

time, [6] 21.3 4 / 158

Table 1: Benchmarks of a 1024-point FFT

Since a complex multiplication can be calculated with
3 real multiplications (by (a + bi) � (c + di) = (A �

B) + (C � A � B)i with A = a � c, B = b � d and
C = (a+b)�(c+d)), 3 cycles is the theoretical optimum
for a butter
y provided that only one hardware mul-
tiplier is used. But this alternative solution requires 3
additions executed parallel to each multiplication. The
corresponding hardware implementation and �rst of all
the coding of the instruction (even in 32 bit words)
would be very di�cult.
The objective to execute a butter
y in 4 processor cy-
cles leads to the following hardware requirements for
the given butter
y computation scheme:

� a hardware multiplier which o�ers the pos-
sibility for MAC-operations (with multiply-and-
accumulate, e.g. A �B+C ! C, two additions of
the butter
y can be integrated in MACs),

� an ALU (arithmetic logic unit) which provides
automatic scaling and saturation arithmetic (for
the 4 remaining additions),

� two address arithmetic units implementing
postmodify in combination with bit-reversed
and circular addressing,

� data registers to hold temporary results and
address registers for indirect addressing,

� zero-overhead loops for the execution of a con-
stant number of butter
ies in succession without
any control overhead during a loop execution (e.g.
testing if a counter equals zero),

� on-chip sine tables in ROM for the twiddle fac-
tors (not absolutely necessary).

These features not only bene�t the FFT implementa-
tion, but are also commonrequirements of digital signal
processing algorithms [4].

3. THE DSP DAISY

DAISY is a programmable general-purpose DSP, which
means that it is optimized for all common DSP al-
gorithms (e.g. �ltering, matrix operations) like other
DSPs. The processor has been implemented in VHDL
and simulated. Tab. 2 and �g. 3 give a short overview
of its features and structure. A word length of 24 bit
is useful e.g. for embedded systems with 16 or 18 bit
ADCs and DACs.

number re-

presentation

24 bit �xed-point two's complement / un-

signed, extended precision (x � 24 Bit)

supported

architecture modi�ed Harvard architecture; 4 stage

processor pipeline; CPU with 24 � 24 !
48 bit multiplier (can be used for MAC-

operations, shifting and 48 bit addi-

tions/subtractions) and 24 bit ALU (with

possibility for automatic scaling and sat-

uration); two address arithmetic units; 24

bit data and 16 bit address busses; regis-

ters: 16 data, 16 address and 10 special

addressing immediate, direct, indirect (with postmod-

ify, bit-reversed, circular)

memory address space: 64 kwords; RAM: 2 kwords

in 4 dual-ported RAM blocks, program

cache: 8 � 8 words; ROM: 256� 4 words

sine table

annotations on-chip periphery and processor interface

not yet designed

Table 2: Overview of DAISY's features

Instructions are executed in a processor pipeline with
4 stages (processor cycles):

� cycle 0: fetch an instruction, increment the in-
struction pointer (program counter);

� cycle 1: send operand addresses to memory,
send contents of address and o�set registers to
the address arithmetic units;

� cycle 2: send operands from memory or regis-
ters to the data processing unit, write updated
addresses back to the address registers;

� cycle 3: send result address to memory, write
result(s) in memory or register(s).

Each cycle is divided into two phases. In the �rst phase,
values are moved from registers or memory to func-
tional units. Results are written back in the second
phase of the following cycle. This solution requires an
internal forwarding mechanism.
The hardware multiplier computes the result of a mul-
tiplication or MAC-operation in two stages. After the

A1
A3
A5
A7

IP
LP1

0

A0
A2
A4
A6

CP
LP0

SP

instruction
cache
(adresses)

Address Register FileMemory Unit

instruction
cache
(data)
(8x8x24)

write
buffer
(4x24)

processor
interface

DPRAM0
(512x24)

DPRAM1
(512x24)

DPRAM2
(512x24)

DPRAM3
(512x24)

ROM
(256x4x24)
sine
table

BusAD0BusAD1

BusKD0

BusKD1

BusC

BusKA0

BusKA1
AAU1

AAU0

Address Arithmetic
Unit

Data Processing Unit
Multiplier

partial product
generator and
reduction tree

registers
P, Q

LF-adder

ALU

Data Register File
D1
D3
D5
D7
D9

Cnt1
N1
0

D0
D2
D4
D6
D8

Cnt0
N0
N2

C1
C3
C5
C7

C0
C2
C4
C6

BusMA0

BusMA1

BusPA

BusPD

BusMD0

BusMD1

d
a
t
a

registers:
A:
IP:
CP:
LP:
SP:
D:
Cnt:
N:
C:

0:
P,Q:

address registers
instruction pointer
constant pointer
loop pointers
stack pointer
data registers
loop counters
offset registers
instruction code
registers
zero registers
pipeline registers

busses:
M:
P:
A:
D:
K:
C:

memory
program
address
data
kernel
opcode

D10
-

D15

Figure 3: Overview of DAISY's structure

�rst processor cycle the result of partial product gen-
eration and reduction is latched in a two-component
redundant binary representation in one of the two reg-
isters P or Q. The second stage executes the �nal addi-
tion of the two components. An operation of the form
Mul D0 D1 ! P ! D2 means: store the redundant bi-
nary representation of D0 � D1 to P and store the sum
of the two components of the previous contents of P
to D2. The two stages have approximately the same
execution time. The partitioning prevents the `criti-
cal path' of the processor (which determines the op-
timal processor cycle time) from leading through the
multiplier. The hardware implementation of a MAC-
operation in �xed-point processors is quite simple: A
small extension of the LF-adder causes a minimal pro-
longation of the second stage.
The coding of a parallel instruction in a 24 bit word is
not easy. For example

Add @A2 D0 ! @A2#N0 k Mul @A1 D3 ! P ! D1

(@ is indirect addressing, #N0 is postmodify with o�-
setregister N0, k is parallel execution) matches the
scheme (P is �xed in this instruction)

Op1 ML

a
WR

a
! MD

a
k Op2 WL

m
MR

m
! P ! WD

m

(with a: ALU, m: multiplier, L: left operand, R: right
operand, D: destination), where Op1 (one bit) can
be an addition or subtraction, Op2 (two bits) can be
a MAC-operation (with + or �) or a multiplication.
Memory operands (M, indirect addressed) are coded in
5 bits, register operands (W) are coded in one (WR

a ,
WD

m) or two (WL
m) bits. That is, the number of avail-

able data registers is restricted in parallel instructions,
e.g. WR

a 2 fD0,D1g [4]. The remaining two bits are
needed for the coding of the instruction type (here:
`parallel instruction').

4. FFT IMPLEMENTATION

The FFT implementation for DAISY is similar to the

... ; outer loop

[LOOP D7 ; middle loop (D7: number of repetitions)

; load two twiddle factors (from @A7 and @A7+1) in parallel:

Move @A7#N2! D3&2

; initialize the inner loop:

Mul @A1 D3 ! P ! D15

Mac @A0 � D2 � P ! P

Mul @A0#N0 D3 ! P ! D0

Sub @A2 D0 ! @A4#N0 k Mac @A1#N0 � D2 + P ! P

[LOOP D6 ; begin butter
y (D6: number of repetitions)

Add @A2 D0 ! @A2#N0 k Mul @A1 D3 ! P ! D1

Sub @A3 D1 ! @A5#N0 k Mac @A0 � D2 � P ! P

Add @A3 D1 ! @A3#N0 k Mul @A0#N0 D3 ! P ! D0

Sub @A2 D0 ! @A4#N0 k Mac @A1#N0 � D2 + P ! P

] ; end of inner loop (butter
y)

; execute concluding operations

; (multiplication only for the data transfer P ! D1):

Add @A2 D0 ! @A2#N0 k Mul @A1 D3 ! P ! D1

Sub @A3 D1 ! @A5#N0

Add @A3 D1 ! @A3#N0

; modify A0 { A5 for the next group of butter
ies:

Add @A0#N1 @A1#N1! D15

Add @A2#N1 @A3#N1! D15

Add @A4#N1 @A5#N1! D15

] ; end of middle loop

... ; outer loop

Table 3: Assembler code for a stage

implementation for the 56000 given in [3]. The pro-
cedure consists of three nested loops: the outer loop
corresponds to a stage (see �g. 2), the middle loop to a
group and the inner loop to a butter
y. Tab. 3 shows
the assembler code for the middle and the inner loop of
the implementation on DAISY (the butter
y is empha-
sized); the allocation of variables to data, address and
o�set registers is given in tab. 4 (; precedes comments,
[] are loop brackets, the register behind the instruction
'LOOP' contains the initial value of the loop counter,
& is a parallel data transfer). The execution of a loop

1:

2:

3:

4:

1:

2:

3:

4:

loop
cycle x

loop
cycle x+1

A[j0]re = A[j0]re + tmpre tmpim = P P = A[i1]im:r �Wim

A[i0]im:w = A[j0]im � tmpim P = A[i1]re:r �Wre � P

A[j0]im = A[j0]im + tmpim tmpre = P P = A[i1]re:r �Wim

A[i1]re:w = A[j1]re � tmpre P = A[i1]im:r �Wre + P

A[j1]re = A[j1]re + tmpre tmpim = P P = A[i2]im:r �Wim

A[i1]im:w = A[j1]im � tmpim P = A[i2]re:r �Wre � P

A[j1]im = A[j1]im + tmpim tmpre = P P = A[i2]re:r �Wim

A[i2]re:w = A[j2]re � tmpre P = A[i2]im:r �Wre + P

Figure 4: Overlapping butter
y computations

with any number of iterations requires two additional
processor cycles outside the loop.

type No. contents

data D0 tmpre (temporary result)

D1 tmpim (temporary result)

D2 Wre (twiddle factor)

D3 Wim (twiddle factor)

D6 number of butter
ies in the actual group

� 1 (repetitions of the inner loop)

D7 number of groups in the actual stage (rep-

etitions of the middle loop)

D15 zero register (writing has no e�ect)

address A0 pointer to A[ix]re:r (read)

A1 pointer to A[ix]im:r (read)

A2 pointer to A[jx]re (read / write)

A3 pointer to A[jx]im (read / write)

A4 pointer to A[ix]re:w (write)

A5 pointer to A[ix]im:w (write)

A7 pointer to sine table (twiddle factors)

o�set N0 1 (constant for postmodi�cation)

N1 number of butter
ies in the actual group

N2 number of points of the FFT / 4 (incre-

mental value for the sine table)

Table 4: Register contents

loops: rest outer middle inner

code length 8 13 12 4

(in words)

execution time 7 14 13 4

(in cycles)

repetitions for 1 x 2
x � 1

x�2

2
� 2x + 1

a 2
x
-point FFT

(in total)

cycles for

x = 10 7 140 13299 16388

Table 5: Implementation analysis

The program executes a butter
y in 4 cycles. Since two
subsequent butter
ies are overlapping each other, some
initializing and concluding operations have to be done
and the number of repetitions of the inner loop in each

group is reduced by one. This overlapping is described
in �g. 4; the actions corresponding to one butter
y are
emphasized with boxes. Tab. 5 gives a short analysis
of this implementation.

5. CONCLUSION

The whole FFT algorithm, optimized regarding the
code length, has a length of 37 words and �ts com-
pletely into the instruction cache (see �g. 3). A 1024-
point FFT can be executed in 29834 processor cycles
(see tab. 1 and 5). The time performance of this algo-
rithm is about 11.3% better than the performance of
the time-optimized FFT (with code length 105 words)
on the comparable DSP56001. A time-optimized ver-
sion of the FFT on DAISY will achieve additional per-
formance improvements of more than 10% for a 1024-
point FFT.

6. REFERENCES

[1] E. O. Brigham; The Fast Fourier Transform;

Prentice-Hall, Inc., 1974
[2] N.N.; TMS320 Family Development Support Ref-

erence Guide; Texas Instruments, Inc., 1992
[3] G. R. L. Sohie; Implementation of Fast Fourier

Transforms on Motorola's DSP56000/56001 and

DSP96002 Digital Signal Processors; Motorola,
Inc.; 1991

[4] M. Grajcar; Spezi�kation und Implementierung

eines Digitalen Signalprozessors f�ur Zahlen in 24-

Bit Festkommadarstellung unter Verwendung von

VHDL; diploma thesis; University of Passau, 1996
[5] P. Papamichalis (ed.); Digital Signal Processing

Applications with the TMS320 Family; Vol. 3;
Texas Instruments, Inc., 1990

[6] N.N.; ADSP-21000 Family Applications Hand-

book, Volume 1; Analog Devices, Inc., 1995

