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ABSTRACT

Fast computation of DFT and other popular transforms is
essential in high-speed DSP applications. This paper
proposes new architectures with low hardware cost and
high throughput rate. The new architectures are very
suitable for VLSI implementation since they are very
regular and require much fewer complex multipliers
compared to the recently proposed approaches.
Furthermore, the same architectures may be exploited to
compute a variety of frequently-used transforms.

1.  INTRODUCTION

Signal transform has been one of the fundamental
operations in DSP. Among the popular transforms are
discrete Fourier transform (DFT), discrete cosine
transform (DCT), discrete sine transform (DST), discrete
Hartley transform (DHT) and Walsh-Hadamard transform
(WHT). There have been many papers on the fast
implementation of these transforms in order to achieve
real-time processing speed. This paper presents other
novel and regular DFT architectures which have the
advantages of low hardware cost and high throughput rate.
These new FFT architectures require only one-third of
complex multipliers compared to the recently proposed
systolic DFT architecture in [1]. The cycle time is also
reduced to that for one complex multiplication instead of
one complex multiplication-addition as required in [1].
The new architectures are also extended to radix-4
versions where only one (two) complex multipliers are
needed to compute DFT of length 8 (64). Furthermore, by
adding suitable pre-processing unit and post-processing
unit, other frequently used transforms such as DCT, DST,
DHT, WHT and their inverses can also be realized on the
same architectures.

2. NEW SYSTOLIC DFT ARCHITECTURES

The DFT of length Ï ï= ³  defined as
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can be represented as a matrix-vector product form X=Wx
where W is the coefficient matrix.  Take N=8 as an
example. By bit-reversing the indices of the elements in X,
the 8 x 8 coefficient matrix W can be decomposed into
product of thre coefficient submatrices Ø ØØØ=

´ ³ ²
 with

each submatrix Ø
ê
containing only three non-zero

diagonals (one right-diagonal Ø
ê

Å , one upper-diagonal

Ø
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Ö and one lower-diagonal Ø
ê

Í ):
Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

±

µ

³

·

²

¶

´

¸

¹

±

¹

±

¹

±

¹

µ

¹

±

¹

±

¹

±

¹

µ

¹

±

¹

±

¹

±

¹

µ

¹

±

¹

±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

































=

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø
¹

±

¹

µ

¹

±

¹

±

¹

±

¹

±

¹

±

¹

µ

¹

³

¹

·

¹

±

¹

±

¹

±

¹

±

¹

±

¹

µ

¹

³

¹

·

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±








































¡



























¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡©ôõâèæ¡´ª¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡©ôõâèæ¡³ª

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡

ø ø

ø ø

ø ø

ø ø

ø ø

ø ø

ø

¹

±

¹

±

¹

±

¹

±

¹

±

¹

±

¹

±

¹

±

¹

±

¹

µ

¹

²

¹

¶

¹

³

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

± ± ± ± ± ±

¹

·

¹

´

¹

¸

±

²

³

´

µ

¶

·

¸

ø

ø ø

ù

ù

ù

ù

ù

ù

ù

ù

































































¡ ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡©²ª

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡©ôõâèæ¡²ª

For example, the three coefficient diagonal vectors for Ø
²

are
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The signal flow graph for the 8-pt. DFT based on the
decomposition in eqn. (1) is shown in Fig. 1.

w8
0

w8
2

w8
1

w8
3

w8
0

w8
2

w8
0

w8
2

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

(stage 1) (stage 2) (stage 3)

Figure 1: Signal flow graph for 8-pt. DFT.

From the above coefficient matrix decomposition, several



DFT architectures can be derived including the radix-2
pipelined FFT [5] and the Boriakoff systolic DFT [1]. For
example, using the systolic implementation of banded
matrix-vector multiplication in [4], the coefficient matrix
decomposition in eqn. (1) can be realized by the systolic
structure in Fig. 2.
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Figure 2: Systolic DFT architecture for N=8.

This structure can be transformed into another recently
proposed Boriakoff systolic DFT architecture in [1] by
proper retiming.
   In fact, the above structure can be further simplified by

observing that the elements of Ø
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architecture shown in Fig. 3 reduces the number of
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³
íðè Ï  to íðè

³
²Ï −  (N=8 in

this case), and thus significantly reduces the total power
consumption. The cycle time is also reduced to that for one
complex multiplication instead of one complex
multiplication-addition.
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Figure 3: New systolic DFT (N=8) architecture with reduced
number of complex multipliers.

3.  NEW RADIX-4 SYSTOLIC DFT

The same idea in Sec. 2 can be applied to generate a
general radix-4 DFT structure computing DFT of length

Ï
ì= +

³
³ ²  if every two tridiagonal coefficient submatrices

are combined into another submatrix with seven nonzero
diagonals. For example, by combining the two tridiagonal
coefficient submatrices Ø Ø³ ²­  into another submatrices

Ø² ³­  with seven nonzero diagonals, another

decomposition is obtained as for the 8-pt. DFT:
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Furthermore, observing that
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, another radix-4 version of the 8-pt DFT architecture is
generated in Fig. 4 which requires only one complex
multiplier and seven complex adders/subtractors. There
are six different operations performed in PEs: È+/- É
denotes complex addition/subtraction; È j/-j É denotes
multiplication of j/-j followed by complex addition; È p É
denotes pure data passing; È * É denotes complex
multiplication.

Xi

p /p /p /+ +/ -/+/ -p/p/+/ - j/p/+/+

+ / -

- j /p /+ / - j

*

W1 , 2
'

control   T

0

x
i

p/p/+/ - p/p/p/j

control   2T

Figure 4: Radix-4 version of the systolic DFT structure for N=8
with only one complex multiplier.

Note that the last coefficient matrix Ø ì³ ²+  can always be

implemented by a single PE containing only complex
addition/subtraction.
   Similarly, radix-4 systolic DFT architectures exist for

Ï
ì= ³

³  if every neighboring two submatrices of the 2k
submatrices are combined into one submatrix with seven
diagonals. Fig. 5 shows a radix-4 systolic DFT
architecture for N=64 where only two complex multipliers
are needed.
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   Many systolic implementations, such as those in [2][3],
require O(N) arithmetic processors to compute DFT of
length N while ours call for only O(logN) processors, a
great saving in hardware cost. Tab. 1 compares the speed
and hardware performance of our O(logN) DFT
architectures (both radix-2 and radix-4 versions) with the
Boriakoff systolic DFT structures [1]. Our proposed FFT
improves significantly the hardware cost by reducing the
number of multipliers by 2/3. Such improvement is due to
the observation of the distribution law
ä ù ä ù ä ù ùê ë ê ë« « «© ª± = ±  for entries in rows of the

coefficient submatrices.

# of complex
multipliers

# of complex
adders

# of registers

Boriakoff FFT 3log2N 3log2N 2N-4log2N+2
proposed new
radix-2 FFT

log2N-1 3log2N-2 2N-4log2N+2

proposed new
radix-4 FFT

log4N-1 7log4N 2N-
12log4N+10

Table 1: Comparison of several O(logN)  DFT structures.

4.  UNIFIED TRANSFORM STRUCTURE

In this section, we will show that the coefficient matrices
of other popular transforms such as DCT, DST, DHT,
WHT, and their inverses can be decomposed into product
of several tridiagonal coefficient submatrices with the
same structure as those in eqn. (1) except that a pre- or
post- permutation matrix are needed.  Thus, the systolic
DFT structures proposed in the previous sections can be
directly exploited to implement these transforms.
  Take as an example the 8-pt DST which can be

expressed as
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2 16äðô© ° ªπ
. Note that the coefficient

submatrices Ôê  have the same structure as Øê  in eqn. (1).

The signal flow graph for the 8-pt. DST is shown in Fig. 6.
The distribution law ä ù ä ù ä ù ùê ë ê ë« « «© ª± = ±  can be

applied to all the submatricesÔ
ê
. Thus, all the systolic

structures mentioned above can be used to implement the
DST if the coefficient ROMs are changed to that for DST
and a final stage implementing the post-scaling submatrix
Spost is added.
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   The inverse DST (IDST) is equivalent to the transpose
of the DST and can be written as
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Thus, the 8-pt IDST follows by taking the transpose of the
DST decomposition in eqn. (2).
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However the transposed coefficient submatrices Ô
ê

Õ  do

not have the structure as Ô
ê
 or Ø

ê
. Thus the IDST can

not be directly implemented using the structures
mentioned in the previous sections, and some
modifications are necessary. First, through reordering of
the output data and data permutation, we obtain
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Then, the combination law ABC=ABC is applied. For
example:
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After such processing, the IDST can be rewritten as:
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where the last two submatrices denote the pre-scaling
required in the computation of the IDST. The other three
submatrices now have the same structures as Ø

ê
 and thus

can be realized using the systolic architectures mentioned
in the previous sections. Fig. 7 shows the signal flow
graph for the 8-pt. IDST in eqn. (4).
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Figure 7: Signal flow graph for the IDST. Note that the last three
stages have the same structure as Fig. 1.

   Similar decomposition can be derived for coefficient
matrices of DCT, DHT, WHT and their inverses. Thus, a
unified architecture for computing various transforms are
generated as shown in Fig. 8 for N=8. The central unit can
be any one of the architectures proposed in the previous
sections with different coefficient inputs. In this figure, the
low hardware-cost systolic DFT in Fig. 3 is used. The data
converters, the pre- and post-processor perform the
necessary data ordering, pre- and post- operations for
different transforms.
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Figure 8: A unified structure for the computation of various
popular transforms and their inverses.

5.  CONCLUSION

Several new DFT structures have been presented by
decomposing the coefficient matrix into submatrices with
several nonzero diagonals and by realizing the submatrix-
vector product using systolic arrays. Further hardware
reduction is possible by applying the distribution law to
the data entries in the rows of the coefficient submatrices.
Radix-4 version of the systolic DFT structures are also
proposed. Moreover, it is possible to implement various
popular transforms and their inverses on the same DFT
structures if the pre- and post-processing units are added.
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