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ABSTRACT can be represented as a matrix-vector product ¥rkivx
where W is the coefficient matrix. Tak&l=8 as an
Fast computation of DFT and other popular transforms isexample. By bit-reversing the indices of the elemen}§ in
essential in high-spee®SP applations. This paper the 8 x 8 coefficient matrixV can be decomposed into
proposes new architectures with low hardware cost angroduct of thre coefficient submatricgg =, ¥, with
high throughput rgte. The new arghitectures are VeNaach  submatrix 7. containing only three non-zero
suitable for VLSI implementation since they are very S )
regular and require much fewer complex multipliers didgonals (one right-diagonal >, one upper-diagonal

compared to the recently proposed approachesyy”and one lower-diagonajy *):

Furthermore, t.he same architectures may be exploited t(ayoE B¢ w8 0 0 0 0 0 00 0w 0 0 0 0 0O
compute a variety of frequently-used transforms. Bg@dowi 0 0 0 0 0 o0pm w 0w 0 0 0 0f
S:?E Booo wlwf 0o 0 0o 025 o s 0o 0 0 0o of
s0.00 0 wd wf 0O 0 O 0000 wf O wf O O 0 00
1. INTRODUCTION Brg B o 0 0w owd 0 0QB0 0 0 0 w 0 W 0f
000 0 0 0 wl wé 0 0000 0 0 0 O wd 0 wil
i B2 5 0o o o 0 o0 w¢ B30 0 0 0 w0 0 wf 0f
Signal transform has been one of the fundamentalagc G o o o o o » #H8H o o o o w2 0o wiH
operations inDSP. Among the popular transforms are (stage ) (stage D)
discrete Fourier transform (DFT), discrete cosine gyog 0 8 8 Wog 0 8 885{05
transform (DCT), discrete sine transform (DST), discrete O o W0 0 0w 0@%;%
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Hartley transform (DHT) and Walsh-Hadamard transform D 0 0 ¥ 0 0 0 WQES@% o
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real-time processing speed. This paper presents other Hooo 0w 0o 0 0 whHE8
novel and regular DFT architectures which have the (sege D

advantages of low hardware cost and high throughput ratd;0" €xample, the three coefficient diagonal vectorsifor
These new FFT architectures require only one-third ofare

compl_ex multiplier_s compgred to thecently _proppsed WlU :[0,0,WS,WS,WS,WS,0,0]

systolic DFT architecture in [1]. The cycle time is also D 6 0 0 o0 4 5 6 7

reduced to that for one complex multiplication instead of W1~ =[Wg W . Wg .wg . W , W5 . g » g |

one complex multiplication-addition as required in [1_]. WlU :[O,O,Wg,wé,wg,wg,O,O]

The new architectures are also extended to radlx-4|.he signal flow graph for the 8-pt. DFT based on the

versions where only one (two) complex multipliers are L 1)is sh in Fig. 1
needed to compute DFT of length 8 (64). Furthermore, bydecompo(s;t'[;(;r; |1r)1 ean. ( (S)t;:; wn m(st;%é 3‘)

adding suitable pre-processing unit and post-processingx,
unit, other frequently used transforms such as DCT, DST, x,
DHT, WHT and their inverses can also be realized on the,,
same architectures.
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DFT architectures can be derived including the radix-2decomposition is obtained as for the 8-pt. DFT:
pipelined FFT [5] and the Boriakoff systolic DFT [1]. For 7 """
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o X , another radix-4 version of the 8-pt DFT architecture is

generated in Fig. 4 which requires only one complex
multiplier and seven complex adders/subtractors. There
This structure can be transformed into another recentl'e six different operations performed in PEs#/- |

proposed Boriakoff systolic DFT architecture in [1] by denotes complex addition/subtraction; j/-j ; denotes
proper retiming. multiplication of j/-j followed by complex additiord; p |

In fact, the above structure can be further simplified bydenotes pure data passing;* ; denotes complex
observing that the elements &, are either 1 or 0, and multiplication.
control 2T

Figure 2: Systolic DFT architecture for N=8
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architecture shown in Fig. 3 reduces the number off
complex multipliers from31og, & 10 Jog, N =1 (N=8in ‘ v control T
this case), and thus significantly reduces the total power guﬂ He X

consumption. The cycle time is also reduced to that for one
complex multiplication instead of one complex Figyre 4: Radix-4 version of the systolic DFT structure for N=8
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f T N = 2% if every neighboring two submatrices of tBie
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4’+/passHD—' o +/pass: W,.(W,.W, x) product diagonals. Fig. 5 shows a radix-4 systolic DFT
0 X, architecture foN=64 where only two complex multipliers
Figure 3: New systolic DFT (N=8) architecture with reduced gre needed.
number of complex multipliers. R R e R e
vl P ] | P U = O
3. NEW RADIX-4 SYSTOLIC DFT b (I T i [T
The same idea in Sec. 2 can be applied to generate b ol
general radix-4 DFT structure computing DFT of length o T -
N - 22](“‘1 if every two tridiagona' Coefﬁcient Submatrices P U s

are combined into another submatrix with seven nonzero —_.[ . i N IR I I N i B T
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coefficient submatricedt;,,J¥; into another submatrices
Figure 5: Radix-4 version of the systolic DFT structure for N=64

W, , with seven nonzero diagonals, another e -
; consisting of only two complex multipliers.



submatrices$; have the same structure &5 in eqn. (1).

reqllj\flraency)(sl\)ll)stoli_;:himptl_ementationS, SltJCh as th(ise IiDnF['I?][gf]’The signal flow graph for the 8-pt. DST is shown in Fig. 6.
arithmetic processors to compute 0 s _

length N while ours call for onlyO(logN) processors, a The distribution lawc*.x; £ c*x; = c*(x; £1;) can be
great saving in hardware cost. Tab. 1 compares the spe@pplied to all the submatricgs. Thus, all the systolic
and hardware performance of ouD(logN) DFT structures mentioned above can be used to implement the
architectures (both radix-2 and radix-4 versions) with theDST if the coefficient ROMs are changed to that for DST
Boriakoff systolic DFT structures [1]. Our proposed FFT and a final stage implementing the post-scaling submatrix
improves significantly the hardware cost by reducing theS,.is added.

number of multipliers by 2/3. Such improvement is due to

the observation of the distribution law G 14 L X
ctx;kc¥x; = c¥(x, £x,) for entries in rows of the % —— 22 ~ = X
coefficient submatrices. o S NX/ o N o< N X
Xe Cs 1/4 Xo
# of complex# of complex# of registers X7 LA s NG LTS ~ 4L Xs
multipliers  |adders % G Y X
Boriakoff FFT | 3logN 3logN 2N-4logN+2 X : , G Y, X
proposed nejflog,N-1 3logN-2 2N-4logN+2 S stage Sstage  Sstage  Soastage
radix-2 FFT
proposed neWog,N-1 7logN 2N- Figure 6: Signal flow graph for the 8-pt DST. Note the
radix-4 FFT 12logN+10 similarity of the first three stages to that in Fig. 1
Table 1: Comparison of sever@(logN) DFT structures. The inverse DST (IDST) is equivalent to the transpose
of the DST and can be written as
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of other popular transforms such as DCT, DST, DHT, =((DSTT (DS, T DSTLY ... [D_STn] [ DSTpost] ). X
WHT, and their inverses can be decomposed into product NUs: the 8-pt IDST follows by taking the transpose of the
of several tridiagonal coefficient submatrices with the PST decomposition in eqn. (2).
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Similar decomposition can be derived for coefficient
matrices of DCT, DHT, WHT and their inverses. Thus, a
unified architecture for computing various transforms are
generated as shown in Fig. 8 fé=8. The central unit can
be any one of the architectures proposed in the previous
sections with different coefficient inputs. In this figure, the
low hardware-cost systolic DFT in Fig. 3 is used. The data
converters, the pre- and post-processor perform the
necessary data ordering, pre- and post- operations for
different transforms.
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Figure 8: A unified structure for the computation of various
popular transforms and their inverses.

5. CONCLUSION

Several new DFT structures have been presented by
decomposing the coefficient matrix into submatrices with
several nonzero diagonals and by realizing the submatrix-
vector product using systolic arrays. Further hardware
reduction is possible by applying the distribution law to
the data entries in the rows of the coefficient submatrices.
Radix-4 version of the systolic DFT structures are also
proposed. Moreover, it is possible to implement various
popular transforms and their inverses on the same DFT
structures if the pre- and post-processing units are added.
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