
VLSI IMPLEMENTATION OF AN AREA{EFFICIENT ARCHITECTURE FOR

THE VITERBI ALGORITHM

Carlos Cabrera

Department of Microelectronic

Catholic University of Peru

Lima. PERU

Montserrat B�oo and Javier D. Bruguera

Department of Electronic and Computers

University of Santiago de Compostela

Santiago de Compostela. SPAIN

elmboo@usc.es bruguera@gaes.usc.es

ABSTRACT

The Viterbi algorithm is widely used in communica-
tions and signal processing. Recently, several area{
e�cient architectures for this algorithm have been pro-
posed. Area{e�cient architectures trade speed for area
by means of mapping the N states of the trellis de-
scribing the Viterbi algorithm to P processing elements,
where N > P . In this paper a practical VLSI imple-
mentation of an area{e�cient architecture to evaluate
the Viterbi algorithm is presented. The architecture
that has been implemented is composed of only two
processing elements and the corresponding routing net-
work to process, in di�erent cycles, all the states of the
trellis. The resulting architecture has been integrated
in a chip using a 0:7� CMOS technology, occupying an
area of 9mm2.

1. INTRODUCTION

The Viterbi algorithm [6] is widely used in many decod-
ing applications in communications and signal and im-
age processing. It is known to be an e�cient method for
the realization of maximum likelihood decoding of con-
volutional codes. It is based on the study of a weighted
graph, called trellis, which is used to reconstruct the
actions of a convolutional encoder based on the infor-
mation received through a noisy channel. Figure 1a)
shows a trellis diagram of 16 states. The trellis de-
scribes the transitions between states and its scheme is
repeated in time. The states of the trellis can be re-
arranged, as shown in �gure 1b), to obtain a buttery
structure similar to that of the FFT. The maximum
likelihood path through the trellis is calculated recur-
sively by means of computing the optimum path of the
N nodes of time t. The paths are represented by a

This work was supported in part by the Xunta de Galicia

under contract XUGA20605B95. This work was performed while

C. Cabrera was with the University of Santiago de Compostela

0000
0001

0000
0001

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

a)

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

b)

0000 0000
00011000

0001 0010
00111001

0100
0101

0010
1010

0110
0111

0011
1011

1000
1001

0100
1100

1010
1011

0101
1101

1100
1101

0110
1110

1110
1111

0111
1111

Figure 1: 16 states trellis diagram

path metric (PM). Each state receives the PM's of its
preceding states and computes the optimum path,

PM [i]t = min
all possible

(PM [k]t�1 + BM(k:i)) (1)

where PM [i]t is the path metric of state i at time t
and BM(k; i) is the branch metric associated with the
transition from state i to state k. The central unit
of the Viterbi decoder is the calculation of the path
metrics (equation (1)), a data{dependent feedback loop
which performs an Add{Compare{Select (ACS) oper-
ation. This non{linear recursion is the only bottleneck
for a high{speed parallel implementation

Most implementations for applications that require
high speed processing, employ a state{parallel approach
with one ACS devoted to each state of the trellis [3].
However, this approach is very expensive when the
number of states is high. Alternatively, area e�cient
architectures [4] [7], where each ACS processes several

ROUTING

LOCAL

LOCAL

ROUTING

LOCAL

ROUTING

ROUTING

GLOBAL
PE 1

PE 0

PE P/2
ACS P-1

ACS P

ACS 4

ACS 3

ACS 2

ACS 1

Figure 2: Architecture model.

states of the trellis in di�erent cycles, can be used. In
this kind of architectures the number of ACSs can be
preset according to the speed and area requirements.

In this paper, we present the implementation, in
an application speci�c integrated circuit, of an area
e�cient architecture composed of two processing ele-
ments (PE) for the processing of the Viterbi algorithm
with an arbitrary number of states. The methodology
for the mapping of the trellis onto a processor network
of arbitrary size is described in [2]. Each PE is com-
posed of two ACSs, in such a way that all the compu-
tations associated to a buttery (two states) are pro-
cessed in the same PE. Therefore, each PE computes
several butteries. On the other hand, the routing net-
work, necessary to recirculate the states between the
PEs, is also included. The resulting architecture has
been integrated in a chip using a 0:7� CMOS technol-
ogy, occupying an area of 9mm2 and the maximum
frecuency reached is 75MHz.

2. AREA EFFICIENT ARCHITECTURE

The computation associated with a trellis involves three
steps: a) Branch metric computation, b) PM updat-
ing in the ACS unit and c) Path storage and output
sequence selection. The BM is computed as the Ham-
ming distance from the values received from a noisy
channel to the output produced in a noiseless channel.

The general structure of the area{e�cient architec-
ture is shown in �gure 2. Each PE is made up of two
ACSs which compute the two states corresponding to
the same buttery. This requires the use of the PMs of
its two possible previous states. To do this there is a
local routing in each one of the processors and a global
routing between processors. This way, the data is recir-

culated and presented to each processor in the correct
order and instant of time for processing the next state
of the trellis.

The architecture implemented is based on the map-
ping methodology described in [2], where the global
data ow of the Viterbi algorithm is described by means
of three operators, concatenation, decimation and par-
tial perfect unshu�e, which present a direct hardware
projection. To this end, each state is represented by
means of a three{dimensional index

[x; y; z] = [xu; : : : ; x1; yv; : : : ; y1; zw; : : : ; z1] (2)

with xi; yj ; zk = 0; 1. This way, the three{dimensional
index is interpreted as a triad that indexes the PE
where the state is processed, the cycle in which it is
processed and the I/O path of the PE. That is, index
[x; y; z] can be interpreted as [PE;CY CLE;PATH].
Therefore, the global data ow de�ned as a perfect un-
shu�e

[xu : : : x1; yv : : : y1; zw : : : z1]!

[z1xu : : : x2; x1yv : : : y2; y1zw : : : z2]

is decomposed into three steps, described by the con-
catenation operator (�), the decimation operator (�)
and the partial perfect unshu�e operator (), de�ned
as

�[x; y; z] = [xu : : : x2; x1yv : : : y1; zw : : : z1]

�[x; y; z] = [xu : : : x1y1; yv : : : y2; zw : : : z1]

[x; y; z] = [z1xu : : : x2; yv : : : y1; x1zw : : : z2]

That is, the concatenation operator introduces the last
bit of �eld x in �eld y, the decimation operator intro-
duces the last bit of �eld y in �eld x and the partial
unshu�e operator performs a cyclic shift to the right
over �elds x and z. It can be shown that the sequential
execution of these three operators results in a perfect
unshu�e over the initial index. Note that the partial
perfect unshu�e operator () only modi�es the PE

and the PATH �elds, keeping unchanged the CY CLE

�eld. Therefore, it speci�es the interconnection among
PES. On the other hand, the other two operators mod-
ify also the CY CLE �eld.

Table 1 shows an example of the application of the
previous methodology for mapping a trellis with 16
states onto an architecture composed of two PE (four
ACS units) with two I/O paths each. Therefore, the
index of each state has three bits (8 states), with 1 PE
bit (2 PEs), 1 CYCLE bit and 1 PATH bit (2 paths).
Column labeled as INPUT represents the inputs to the
butteries (one buttery per PE) and columns labeled
as �, � and show the reordering of the data after the
application of each operator.

PE PATH INPUT � �

0 6 4 2 0 3 2 1 0 3 2 1 0
0 7 6 5 4 3 2 1 0

1 7 5 3 1 7 6 5 4 11 10 9 8

0 14 12 10 8 11 10 9 8 7 6 5 4
1 15 14 13 12 11 10 9 8

1 15 13 11 9 15 14 13 12 15 14 13 12

Table 1: Application of the operators

P E 0

P E 1

PATH 0

PATH 1

PATH 0

PATH 1

Figure 3: Interconnection between PEs.

The concatenation and decimation operators are
easily implemented by means of a FIFO queue with
two input cells for concatenation and two output cells
for decimation. On the other hand, the partial perfect
unshu�e operator, as it represents the interconnection
between PEs, is implemented as a routing network be-
tween processors.

3. IMPLEMENTATION OF THE

ARCHITECTURE

As said before, we have implemented an architecture
with two PEs, each of one is composed of two ACSs, to
perform the Viterbi decoding of a 16 states trellis (see
�gure 1).

Figure 3 shows the interconnection between the two
PEs. Note that it reects exactly the operation of the
partial unshu�e operator (see also table 1). The inter-
nal structure of the PE number 0 is depicted in �gure
4. The structure of PE number 1 is similar. Each PE,
that computes one buttery, is composed of two ACS
units, where the path metrics are updated, and a FIFO
queue, with two input cells and two output cells, to im-
plement the concatenation and decimation operators.

SELECT

SELECT

H

H

ACS

SELECT

SELECT

H

H

ACS

PATH[3]
PATH[2]
PATH[1]
PATH[0]

PATH[11]
PATH[10]
PATH[9]
PATH[8]

PATH0_OUT

PATH1_OUT

PATH[4]

PATH[0]
PATH[2]

PATH[6]

PATH[7]
PATH[5]
PATH[3]
PATH[1]

BM

BM

R(0,0)

R(1,2)

R(2,4)

R(3,6)

R(8,9)

R(9,2)

R(10,4)

R(11,6)

BM

BM

R(0,1)

R(1,3)

R(2,5)

R(3,7)

R(8,1)

R(9,3)

R(10,5)

R(11,7)

CHANNEL
NOISY

PATH1_IN

PATH0_IN

TRACE

FORWARD
PATH

SURVIVOR

Figure 4: Internal structure of the PE

The input received through the noisy channel is pro-
cessed in modules H to compute the Branch metrics
(BM) as the Hamming distance from the value received
to the value produced in noiseless channel (reference
value). The reference values are stored in a set of regis-
ters R(i,j) representing the value that produces a tran-
sition from state i to state j. The path metrics (PM) of
the states processed in the buttery, received as inputs,
together with the BMs, are used by the ACS units to
obtain the new PMs. The PMs have to be recirculated
to the following buttery. The �rst part of the recir-
culation (concatenation and decimation operators) is
performed in the FIFO queue.

The FIFO queue to implement the concatenation
and decimation operators has, as input cells, the two
�rst cells. In the �rst one (cell 0) the output of the �rst
ACS is introduced, whereas, the output of the second
ACS is introduce in the second cell (cell 1). After the
computation and storage of the data associated with
each buttery, a two position right shift of the FIFO

queue must be carried out to free the �rst two cells for
the storage of the result of the computation of the next
buttery. Once the queue is full, that is, the outputs
are obtained from cells 4 and 8, shifting one position
the FIFO queue each time a data is read.

Moreover, each PE includes the hardware necessary
to select the survivor path, that is, the PM through
the trellis that matches the received sequence. Each
processing cycle, the PE o�ers the decision bit that
will permit reconstructing the state sequence that has
occurred. The decision bits are in a RAM memory
and the memory is traced back using the trace forward
algorithm [1] in order to obtain the survivor path.

This architecture has been implemented in a in-
tegrated circuit using a 0:7�m CMOS standard cells
(ES2) technology. The total area of the chip is 9mm2

and the maximum frecuency reached is 75MHz. As
two PEs (four ACSs) have been implemented to pro-
cess trellises with 16 states, four butteries of the trellis
are processed sequentially in each PE. Considering that
each buttery is processed in one clock cycle, the total
latency is four cycles.

It can be pointed out that, due to the recursive na-
ture of the Viterbi algorithm, the PM's wordlength will
grow with time. In order to avoid this, the PM has to
be re-scaled after each iteration [5]. In our particu-
lar case, the wordlength need in the PMs is only four
bits; that is, each ACS is composed of 4{bit adders and
comparator. Therefore, carry ripple adders have been
used.

The architecture implemented can be rearranged to
perform the Viterbi decoding of trellises with a larger
number of states. To do this, the logic to compute the
BMs has to be adapted to the number of states.

4. CONCLUSIONS

A VLSI area{e�cient architecture for Viterbi decoding
of a convolutional code, represented by a 16 states trel-
lis, has been described. The architecture is based in the

mapping methodology proposed in [2]. That method-
ology allows to select the number of PEs needed to
perform the decoding, in such a way that each PE pro-
cesses several states of the trellis.

We have presented the implementation of an ar-
chitecture composed by two PEs with two ACS unit
each. This way, each PE processes four butteries of
the trellis. With few changes the architecture can pro-
cess trellis with a larger number of states. Of course,
in this later case, the latency will be larger.

The architecture has been implemented in 0:7�m
CMOS technology, using the ES2 standard cells library.
The maximum frecuency is 75MHz. Therefore, the re-

sulting implementation is suitable to be used in appli-
cations requiring high speed and/or low hardware cost.

5. REFERENCES

[1] P.J. Black and T.H.Y. Meng. Hybrid Survivor

Path Architectures for Viterbi Decoders. Proc.
ICASSP{93. pp. 433{436. (1993).

[2] M. Boo, F. Arguello, J.D. Bruguera, R. Doallo and
E.L. Zapata. High{Performance VLSI Architec-

ture for the Viterbi Algorithm. IEEE Trans. Com-
munications (to appear).

[3] C-Y. Chang and K. Yao. Systolic Array Processing
of the Viterbi Algorithm. IEEE Trans. Information
Theory. Vol. 35. No. 1. pp. 76{86. (1989).

[4] F. Daneshgaran, K. Yao. The Iterative Collapse

Algorithm: A Novel Approach for the Design of

Long Constraint Length Viterbi Decoders. IEEE
Trans. Communications. Vol. 43. No. 2/3/4. pp.
1409{1418. (1995).

[5] G. Fettweis and H. Meyr. High Rate Viterbi pro-

cessor: A Systolic Array Solution. IEEE Journal
on Selected Areas on Communications. Vol. 8. No.
8. pp. 1520{1533. (1990).

[6] G.D. Forney. The Viterbi Algorithm. Proc. of the
IEEE. Vol. 61. No. 3. pp. 268{278. (1973).

[7] C.B. Shung, H.D. Lin, R. Cypher, P.H. Siegel and
H. Thapar. Area{E�cient Architectures for the

Viterbi Algorithm{Part I. IEEE Trans. Commu-
nications. Vol. 41. No. 4. pp. 636{644. (1993).

