
LOW-AREA DUAL BASIS DIVIDER OVER GF (2M) �

Leilei Song Keshab K. Parhi

Department of Electrical Engineering

4-174 EE/CSci Building, 200 Union Street S.E.

University of Minnesota, Minneapolis, MN 55455, USA

E-mail: fllsong, parhig@ee.umn.edu

ABSTRACT

This paper presents a low-area �nite �eld divider using dual

basis representation. This divider is based on the division

algorithm of solving Discrete Wiener-Hopf Equation using

Gauss-Jordan elimination method. The hardware complex-

ity of the matrix generation part has been reduced dramat-

ically form O(m2) to O(m). When it is used as a build-

ing block for a large system, this divider can achieve more

savings in hardware by utilizing sub-structure sharing tech-

niques.

1. INTRODUCTION

Finite �eld arithmetic operations have received a lot of at-

tention because of their important and practical applica-

tions in cryptography, coding theory, switching theory, and

digital signal processing. Among all the arithmetic oper-

ations over �nite �elds, division is the most complicated

operation. Some work has recently been done in this area.

Two methods have been considered for �nite �eld division.

The �rst approach is based on the use of Fermat's theorem

by recursive square and multiplication (inversion) operation

[1] [2], and the second approach is based on by solving si-

multaneous linear equations over GF (2) [3] [4]. The second
division algorithm (DA) and the corresponding architecture

were �rst completely presented in [3]. This DA consists of

two steps. In the �rst step, a coe�cient matrix is generated.

In the second step, a system of linear equations is solved.

When standard basis is used, the m2 elements in coe�cient

matrix are all di�erent and need to be calculated. However,

when dual basis is used, only 2m�1 di�erent elements exist

in the coe�cient matrix, which form the coe�cient matrix

of Discrete Wiener-Hopf equation. By utilizing this partic-

ular matrix structure in dual basis, the hardware complex-

ity of matrix generation step is dramatically reduced from

O(m2) to O(m).

This paper is organized as follows. In section 2, the di-

vision algorithm is brie
y reviewed for both standard basis

and dual basis. Section 3 presents the new dual basis di-

vider structure and some comparison results against previ-

ous designs. Section 4 addresses the sub-structure sharing

techniques which can be applied to this divider structure

� THIS RESEARCH WAS SUPPORTED BY ARMY

RESEARCH OFFICE UNDER GRANT NUMBER DA/DAAH-

94-G-0405.

when it is used as a building block for large system. Fi-

nally, conclusions are drawn in section 5.

2. MATHEMATICAL BACKGROUND

2.1. Finite Field Fundamentals

Knowledge of basic �nite �eld concepts and properties is

assumed. They are covered in [5]- [7]. The concepts and

properties related to �nite �eld arithmetic operations are

brie
y reviewed in this section. In what follows, the sym-

bols in GF (2m) and the bits of symbols, which are elements

of GF (2), are represented using upper and lower case vari-

ables, respectively.

Finite �eld GF (2m) contains 2m elements. It is an exten-

sion �eld of GF (2), which has elements 0 and 1. All �nite

�elds contain a zero element, a unit element, a primitive

element � and have at least one primitive irreducible poly-

nomial f(x) = xm+ fm�1x
m�1+ � � �+ f1x+ f0 over GF (2)

associated with it where f(�) = 0. The non-zero elements

of GF (2m) can be represented as powers of the primitive el-

ement �, i.e., GF (2m)=f0; �1; �2; � � � ; �2
m
�2; �2

m
�1 = 1g.

Since �nite �eld GF (2m) is a vector space over GF (2), its
elements can also be expressed using basis representation.

The standard basis consists of f1; �; �2; � � � ; �m�1g and the

elements of GF (2m) can be expressed using a polynomial

of � as GF (2m)=fAjA = am�1�
m�1 + am�2�

m�2 + � � � +
a1� + a0; where ai 2 GF (2); 0 � i � m � 1g. If the

standard basis is taken as the primary basis, its dual basis

can be computed as follows [7][4].

De�nition 2..1 (Trace) 8 � 2 GF (pm), the trace of � is

de�ned as Tr(�) =
Pm�1

k=0
�p
k

.

De�nition 2..2 (Dual Basis) The dual basis of the pri-

mary basis f1; �; �2; � � � ; �m�1g with respect to certain �
2 GF (2m) is de�ned to be the unique set of elements

f�0; �1; � � � ; �m�1g such that

Tr(��i�j) =

�
1; when i = j
0; when i 6= j;

where � can be selected appropriately to simplify the con-

version between standard (primary) and dual basis. In dual

basis representation, The coordinates of A 2 GF (2m), ai,
can be computed as ai = Tr(�A�i), 0 � i � m� 1.

The main di�erence between standard and dual basis

representations for �nite �eld arithmetic operations is that

multiplication by � operation is performed in di�erent ways.

Given A 2 GF (2m). Let A0 = A� mod f(x), where f(x) is
the primitive polynomial. When standard basis representa-

tion is used for both A and A0, the coordinates of A0, a0i,
can be computed from the coordinates of A, ai, as follows:

a0i = ai�1 + am�1fi; 1 � i � m� 1

a00 = am�1f0: (1)

When dual basis representation is used for both A and A0,

their coordinates have the following relations:

a0i = Tr(�A� � �i) = ai+1; 0 � i � m� 2

a0m�1 = Tr(�A� � �m�1
) =

m�1X
k=0

akfk: (2)

As can be seen, when A is multiplied by � in dual basis,

only one coordinate of A0, a0m�1, needs to be computed.

However, when standard basis representation is used, all m
coordinates of A0 need to be computed. This is the key fact

on which the proposed designs are based.

2.2. Division Algorithm

Let f(x) be the primitive irreducible polynomial of degree

m for GF (2m) and let � be a root of f(x). AssumeAB = C.
This multiplication can be carried out in the following way:

C = AB mod f(x)

= b0A+ b1(A� mod f(x))

+b2(A�
2 mod f(x)) + � � �

+bm�1(A�
m�1 mod f(x)) (3)

or in matrix form:

[A A� � � � A�m�1
]B = C; (4)

where A, B and C are the column vectors of coordinates of

A, B and C, respectively and A �i is the column vector of

coordinates of A�i mod f(x). When the coordinates of A
and C are known, B=C/A can be computed by solving the

system of m linear equations for m unknowns. This leads

to the division algorithm as follows:

1. Form the coe�cient matrix M from A, one column at

a time, and the successive column is computed by mul-

tiplying its immediate previous column by � (Matrix

Generation).

2. Solve (4) M B = C to obtain the coordinates of B
by performing elementary row operations on matrix

[M C], where C is appended toM as the last column

(Gauss-Jordan Elimination).

When A, B and C are in standard basis representation,

(4) can be written as

2
664

a
(0)

0 a
(1)

0 � � � a
(m�1)

0

a
(0)

1 a
(1)

1 � � � a
(m�1)

1

� � � � � �

a
(0)

m�1 a
(1)

m�1 � � � a
(m�1)

m�1

3
775
2
64

b0
b1
� � �
bm�1

3
75 =

2
64

c0
c1
� � �
cm�1

3
75 (5)

MGGenerate matrix M

GJE

B

signal
control

A

C

Figure 1. System Diagram of Divider Architecture

where a
(k)

i denotes the i-th coordinate of A�k mod f(x), bi
denotes the coordinate of B and ci denotes the coordinate
of C, 0 � i � m � 1 and 0 � k � m � 1. For standard

basis representation, all elements in matrix M need to be

computed (except those in the �rst column which are the

coordinates of A).

Dual basis multiplication and division are actually hybrid

operations. The multiplicand and the result are in dual

basis while the multiplier is in standard basis. Let A and C
are expressed in dual basis and B is in standard basis. Let

ai be the coordinates of A in dual basis and ai = Tr(�A�i).
Let bi be the coordinates of B in standard basis and ci be
the coordinates of C in dual basis. Then (4) can be written

as2
64

a0 a1 � � � am�1

a1 a2 � � � am
� � � � � �

am�1 am � � � a2m�2

3
75
2
64

b0
b1
� � �
bm�1

3
75 =

2
64

c0
c1
� � �
cm�1

3
75 : (6)

Due to the properties of dual basis, MB=C becomes a

discrete-time Wiener-Hopf equation and only 2m � 1 el-

ements in matrix M need to be computed (including m
elements of coordinates of A).

3. DIVIDER ARCHITECTURE

3.1. Existing Standard and Dual Basis Dividers

One standard basis divider has been proposed in [3] and

one dual basis divider has been proposed in [4]. They are

based on equations (5) and (6), respectively. Although the

basis representations are di�erent, the divider architectures

in [3] and [4] are quite similar. Their system level diagram

(for GF (24)) is shown in Figure 1, in which MG stands

for Matrix Generation, and GJE stands for Gauss-Jordan

Elimination. The architecture for solving the system of

equations using Gauss elimination and back substitution

(Gauss-Jordan Elimination) is the same for both previous

architectures as well as the architectures in this paper. As

to the matrix generation part, the two existing dividers both

have m basic cells and each basic cell consists of one AND

gate, one XOR gate, two MUXes and six latches. In order

to synchronize the output from the matrix generation part

to satisfy the requirement of the Gauss-Jordan elimination

part, (m2 � m)=2 latches have been added. Thus the to-

tal hardware complexity is m AND gates, m XOR gates,

D

D

D

D

D

D

D

DD

D

1 0m-1 m-2 m-3 . . .

f
m-1

f
m-2

f
m-3

f
1

f
0

.

Binary-tree XOR gates

Figure 2. Architecture 1: Generating the Matrix

M

2m MUXes and (m2+11m)=2 latches. As can be seen, the

O(m2) latches add a lot of overhead asm increases. In addi-

tion, the advantage of dual basis representation where only

m� 1 elements need to be computed to form the system of

equations (matrix M) has not been made use of.

Based on above observations, two new dual basis divider

architectures are proposed which minimize the hardware

complexity by taking advantage of the dual basis represen-

tation.

3.2. Proposed Dual Basis Divider Architectures

Architecture 1.

The �rst proposed architecture for matrix generation part

is shown in Figure 2 (in which fi denotes the coe�cient of
the primitive polynomial f(x), 0 � i � m� 1). The upper

part of linear feedback shift register (LFSR) in Figure 2 is

used to generatem�1 elements of matrixM and the second

part of latches is used to provide appropriate delays such

that the output from this section are in the following form

which is required by the Gauss-Jordan array:

0 c3
0 a6 c2
0 a5 a5 c1
1 a4 a4 a4 c0
0 a3 a3 a3 a3
0 a2 a2 a2
0 a1 a1
1 a0

(7)

where the �rst column denotes the control signal. The coor-

dinates of divisor A are loaded to the LFSR in parallel every

m clock cycles. The same control signal for Gauss-Jordan

array can be used as the select signal for input multiplex-

ing. The hardware requirement ism AND gates, m�1 XOR
gates, m latches and (m2+m)=2 latches. This architecture
is e�cient only when m � 4.

Architecture 2.

As can be seen from (7), at each time instance the inputs

to di�erent columns of Gauss-Jordan array are the same.

This implies that broadcast signal can be used to further

reduce the number of latches. The second proposed archi-

tecture for matrix generation part is shown in Figure 3. The

upper part of LFSR remains the same as that in Architec-

ture 1 while the hardware complexity of the second part has

D

D

D

D

Binary-tree XOR gates

1 0m-1 m-2 m-3 . . .

f
m-1

f
m-2

f
m-3

f
1

f
0

. . .

m-1
latches

. . .
012m-3m-2m-1

m shift register control
signal

Figure 3. Architecture 2: Generating the Matrix
M

D

D

D

0123

HB LB

shift register

3 2 1 0

control

Figure 4. Matrix Generation Part for Divider in
Example 1

been reduced from O(m2) to O(m). In this architecture, the

advantage of dual basis representation has been fully uti-

lized and only 2m � 1 latches are required for computing

and storing the elements of matrixM. The shaded region in

Figure 3 is used to perform conditional broadcasting of the

signals from both sides and the broadcasting path is con-

trolled by the control signal in the m shift registers. (The

same control signal for input multiplexing can be used in

the shaded region.) This portion is necessary because the

divider is a pipelined structure and several computations

can be performed in a pipeline interleaved way. This archi-

tecture is explained in more detail in Example 1.

Example 1. This example shows how the second pro-

posed architecture works in a GF (24) divider. Let f(x) =
x4 + x + 1 be the primitive polynomial for GF (24). Then

the architecture for matrix generation is derived and shown

in Figure 4. The contents of the m-bit shift register and the

output of this structure are listed in Figure 5. Initially, the

time tshif3 shif2 shif1 shif0

0a

a1
a2
a3
a’0
a’1
a’2
a’3

a1
a2
a3
a4
a’1
a’2
a’3
a’4

a2
a3
a4
a5
a’2
a’3
a’4
a’5

a3
a4
a5
a6
a’3
a’4
a’5

a3
a4
a5
a6
a’3
a’4
a’5

init. 000 0

1000

1100

1110

0111

011 1

01 11

1110

0111

011 1

control
signal

HB 3 2 1 LB(0)

Figure 5. Tabular Form for Example 1

4 registers are reset to zero and all the pass-transistors are

o�. At this time, only a0 is output. In the next 3 clock cy-

cles, as the control signals are shifted through the registers,

a1, a2 and a3 are broadcast from the right side during the

3 following clock cycles while the path from the left side is

o�. Then at 5-th clock cycle, a new set of inputs are loaded

and another computation is performed concurrently with

the previous one. In this clock cycle, the control signal 0

turns o� the rightmost pass-transistor and two broadcast

signals, one from the left side for the previous computa-

tion and one from the right side for the new computation,

are broadcast simultaneously through the pass-transistors

under the control of the contents of the shift register for

another 4 consecutive clock cycles. Thus the computation

has been performed in a pipeline interleaved fashion.

The total number of latches has been reduced to 3m� 1

in Architecture 2 while the latency and throughput remain

the same as the existing designs. Furthermore, only one

control signal is required to load inputs, generate matrix

M and compute Gauss-Jordan elimination.

It needs to be pointed out that for m � 4, Architecture

1 is more e�cient and for m > 4, Architecture 2 is more

e�cient. Since dual basis multiplication and division are

hybrid operations using both standard basis and dual basis

representation, basis conversion need to be performed very

often. It has been proved in [8] and [4] that by appropriately

selecting element � and the corresponding dual basis, basis

conversion can be performed by permutation with little or

no extra hardware. Hence the basis conversion is no longer

a problem as long as the primitive polynomial can be pre-

selected and �xed.

4. SUBSTRUCTURE SHARING

Finite �eld arithmetic architectures are used as building

blocks for large systems, such as Reed-Solomon decoder,

which contains the structure that several elements are di-

vided by one element at the same time. Assume that i
elements C1; C2; � � � ; Ci are divided by element A at the

same time, as shown in Figure 6(a). The division algo-

rithm of solving system of linear equations is proceeded by

performing elementary row operations on matrix [M C],

where the coordinates of dividend C are appended toM as

the last column. To this end, in order to perform these si-

multaneous divisions, the coordinates of C2; C3; � � � ; Ci can
be input to Gauss-Jordan elimination array (GJE) at the

same time as C1 (i.e., appended as extra columns to matrix

[M C1]) and the same elementary row operations will be

performed for all of them. Hence by simply adding i � 1

columns of square cells, i� 1 more division operations can

be performed at the same time, which in turn saves i � 1

copies of matrix generation part and GJE part as shown in

the shaded region in Figure 6.

5. CONCLUSIONS

In this paper, a new dual basis �nite �eld divider has been

presented. This new architecture has the same latency and

throughput as the existing dividers in [3] and [4]. However,

the hardware complexity has been reduced dramatically. A

sub-structure sharing technique has also been presented and

large amount of savings in hardware can be achieved when

this divider is used as a building block for large systems.

A

C2 C3 Ci

B2 B3 Bi

C1

B1

B1 = C1/A B2 = C2/A B3 = C3/A Bi = Ci/A

(a)

(b)

m-1 square cells

m-2 square cells

m-3 square cells

m
 square cells for C

1

m
 square cells for C

2

m
 square cells for C

3

m
 square cells for C

i

A

C1 C2 C3 Ci
MGenerate Matrix

Gauss-Jordan

elimination

B1 B2 B3 Bi

Figure 6. Substructure Sharing for Divider Blocks
in a Large System

REFERENCES

[1] C. C. Wang et al, \VLSI Architectures for Computing

Multiplications and Inverses in GF(2m)", IEEE Trans.

on Computers, vol. c-34, pp. 709{716, August 1985.

[2] S. T. J. Fenn, M. Benaissa, and D. Taylor, \Finite Field

Inversion over the Dual Basis", IEEE Trans. on VLSI

systems, vol. 4, pp. 134{137, March 1996.

[3] M. A. Hasan and V. K. Bhargava, \Division and bit-

serial multiplication over GF(qm)", IEE Proceedings-E,

vol. 139, pp. 230{236, May 1992.

[4] S. T.J. Fenn, M. Benaissa, and D. Taylor, \GF (2m)
Multiplication and Division Over the Dual Basis", IEEE

Trans. on Computers, vol. 45, pp. 319{327, March 1996.

[5] R. E. Blahut, Theory and Pratice of Error Control

Codes, Addison Wesley, 1984.

[6] W. W. Peterson and E. J. Weldon, Error-Correcting

Codes, The MIT Press, 1972.

[7] R. J. McEliece, Finite Fields for Computer Scientists

and Engineers, Kluwer Academic, 1987.

[8] M. Morii, M. Kasahara, and D. L. Whiting, \E�cient

Bit-serial Multiplication and the Discrete-Time Wiener-

Hopf Equation Over Finite Field", IEEE Trans. on In-

formation Theory, vol. 35, pp. 1177{1183, Nov 1989.

