VLS| ARCHITECTURE FOR DATAPATH INTEGRATION OF ARITHMETIC
OVER GF(2™ ON DIGITAL SIGNAL PROCESSORS

Wolfram Drescher, Kay Bachmann, and Gerhard Fettweis

Mobile Communications Systems
Dresden University of Technology, D-01062 Dresden
drescher,bachmann,fettweis@ifn.et.tu-dresden.de

ABSTRACT lations of operands take place. To achieve a higher perfor-

. . . . - . mance, a DSP datapath is specialized on the types of
This paper examines the implementation of Finite F'EI%omputations mostly performed in signal processing.

arithmetic, i.e. multiplication, division, and exponentiation,pracent DSPs support these computations by functional
for any standard basiSF(2") with ms8 on a DSP hits as multiplier-accumulators, bit manipulation units or
datapath. We introduce an opportunity to exploit cells anfly q| shifters. As demand grows for Domain Specific Digi-

the interconnection structure of a typical binary multiplieriy| signal Processors (DSDSP) for special applications, e.g.
unit for the Finite Field operations by adding just a §m.aI}n mobile communications systems, manufacturers have
overhead of logic. We develop division and exponentlatlmgegun to tailor their processors to the algorithms of the

based on multiplication on the algorithm level and presemépplication for which the DSP was requested. For the
simple scheme for implementation of all operations on Jatanath this means more functionality and parallelism
processor datapath. needs to be added [2].

1. INTRODUCTION Our intention was to design a d_atapath fora DSDSP for the

domain of error correction CodlngFrom the arithmetical

Arithmetic over Finite Fields is usually applied in codingpoint of view, this requires addition, multiplication, divi-
theory, cryptography and their applications [1]. Evension, and exponentiation over Galois Fields. However, in
though there would exist many applications in mobile an@ddition conventional binary fixed point multiply and accu-
satellite communication, codes based on Finite Fields araulate operation as a basic feature of a DSP need to be sup-
not commonly used yet. For example, BCH codes havgorted as well.
very desirable properties regarding burst error correction,
but are currently not used in mobile communication net- 3. ALGORITHMIC APPROACH FOR ARITH-
work systems. At present, hardware providers offer a vari- ~ METIC OVER FINITE FIELDS GF(2™)
ety of chipsets for specific applications having heav

constraints for arithmetic over Finite Fields and therefor he first non sequential architecture for Finite Field Multi-

code properties as well. For applications based on flexibfd cation was described in [3]. In [4] an attempt has been
made to integrate a Finite Field multiplier in a economical

field width and variable primitive polynomials, to our av o DSDSP datapath. In thi or we 4o one ste
knowledge, no hardware solution is available. If programy 2y °n @ path. In this paper, we g step
further and present an architecture for integration of all

mable logic components would be utilized for Finite Field. ! : : S .
arithmetic, the programmer could freely choose betwee portant arithmetical operations over Finite Fields on a
different codes for different applications. That means, an SDSP datapath. . : .

any papers have focused on performing arithmetic over

theoretical designed code could be easily customized nite Fields in ntial wav [51. [6]. or b in il
hardware implementations using a programmable proces- e Fields in a sequential way [5], [6], or by using sys

sor. No longer would special and expensive circuits need 8|'C structures [7], [B]. Mostly, these approaches exploit

be designed for a particular system implementation. Th roperties of normal basis and cannot be applied for stan-
system implementation and testing could be execute rd basis. Hence, they cannot be used for programmable

straightforwardly in a software environment. Once DSI:,glrchitectures. Our proposed architecture allows a general

support Finite Field arithmetic, we anticipate a break>ad¢€ for any standard basis Finite Field.

! i Finite fields, so called Galois fields, consist Bfglements
through even for low budget coding applications. where p is a prime and N - {0}. GF(p™ is an extension

2. DATAPATH DESIGN REQUIREMENTS FOR field of GF(p). Codes with symbols from the binary field

DOMAIN SPECIFIC DSPs
. 1. This work was sponsored in part by the Deutsche Forschungs-
A processor datapath is where the vital arithmetic manipu- gemeinschaft within the Sonderforschungsbereich SFB 358

GF(2) of 2elements GF(2)={0,1}) or its extension B _ -1 9)
GF(2™) are most widely used in digital systems. y - B

a is a root of a primitive irreducible polynomial it turn out that the real problem of division o@F(2") is

f(x) = XM+ X" L+ fax+fy in GF(2™). All nonzero 1o find an efficient computation algorithm for the multipli-
elements ofGF(2™) can be represented as powers of @ative inverse element of the divisor. Two algorithms are

primitive elementa. Since f(a) =0, a=f,..0™ ... known:

+fi0 +fy, i.e. an element dBF(2™) can be expressed as a - Euclid’s algorithm [12],

polynomial ofa with degree less than m. The polynomial - Continuous square algorithm.

representation is used to represent the finite @#2™). |n this paper, the continuous square algorithm is used which

Since the elements of a Finite Field can be represented Rybased on a fundamental propertyadf(2™):
vectors with its coefficients fro®8F(2) {0,1}, the addition om_q

in GF(2M is equivalent to the subtraction. Hence both oper- % =1. (20)
ations can be realized by the same hardware. In contrast : -1 .

addition, the computation of multiplication and division\}\?za multuily (102,E)W1 ani get (Zlml)'z

over Finite Fields is more difficult. Following, basic algo- yvo= v T T =y T (11)
rithms for multiplication, division, and exponentiation over gjnce
GF(2™ will be discussed.

3.1 Multiplication
- m-1 —
If A=ap+a;0+..+aa ™ and B=Dby+bja+..+Db y'1 can be computed successively by squaring and multipli-

m-
m-10"™"are two elements froBF(2"), then cation. To give an example, we use Gif(Bince 14 =2 +
A+B=C=cy+Cq ... +GaMt, (1) 4+8,

with ¢ =a; + b, mod 2 (0<i <m-1).) V= 2aAns =yt

m-1)
oM o= z 2

i=1 (12)

(13)
Hence, addition oveGF(2™) can be realized easily by m
independent XOR gates. Multiplication ov@F(2™ is 3.3 Exponentiation

defined through Exponentiation over Finite Fields is useful for decoding

a(x) U b(x) = a(x)-b(x) mod f(x). (3) Reed-Solomon-Codes, e.g. for Forney's algorithm to com-
It can be calculated by building partial products pute error values. A simple algorithm for exponentiation

P.(x) = a(x) t?xi O<i<m) 4) over GF(®") based on multiplication was proposed in [11]:

i) = ' =
— RE\pji

first. Second, all partial produci(x) have to be added y=Fwith BOGF2") eON (14)
modulo 2. A partial resulE,(x) can be obtained with Each integer can be presented in its binary representation as

Cp(X) = ¥ P(x) mod 2 (5) @ n-bit-vector according to (14).

CplX) = Co + C1X + ... + Cpp. 20 ™2 (6) e=qte2 e+ .+t 2"t (15)
which is obviously not an element of the fi@(2™). To ~ TNe substitution of (15) info (14) leads to:
reduce the highest order texthof Cy(x) the property of the y = Beo +E2+82" +... +6,_2
irreducible polynomial

n-1
€,_12

2
XM= fo+fox+ ...+ fp Xt @) y = Be°+[3e12+[3322 +...+P
is exploited. The substitution starts with the highest order _ /.81,.© 8, 1n2\2,2.2 16
term comox2™ 2 from (6). (7) is used to produce a partial y =B (B (B°.-(B")))) (16)
resultC',, of one degree less thax: and]
P om- e me if g =1
C'p() =[Co+ CiX + ... + Cop @™ + B = [.
[fo XM 2+ f 182 . + XM LX™E, (8) me if e =0 17)

This operation is altered un@‘ (x) is of degree m-1, i.e. it From (15) and (16) an exponentiation algorithm can be

becomes an element GF(2™). Details are given in [12]. derived:

s y=1
3.2 Division fori=n-1to 0
Division is not directly defined in a straight forward manner {y=y?
in a Finite Field. However, a possibility to perform division ifg=1theny =B ¥
overGF(2") is by multiplication of the inverse element of a }

divisor B with the dividendy : ge=y

4. IMPLEMENTATIONAL APPROACH busa 174 busb buscg
17-b
4.1 Multiplication :j,j:N-b 4

In [4] opportunities have been investigated to merge a con- Multiply 17x8-bit}
ventional binary multiplier and a multiplier ov&F(2™) at CS 8 part. produc

the gate-level. This leads to a new multiplier architecture | {-17.p T

that performs both types of multiplications employing the

same logical cells with a low complexity and a marginal /,/|/17‘b/|//8‘b
propagation overhead. This architecture will serve as the 46-b-17T ; o
basis for our error correction coding DSDSP datapath intro- | Multiply 17x8 ﬁ\

—

o DU - 17-b CS 8 part. product
duced in this paper. o
The switching function of a full-adder with 3 inputsg, Xo, Muiply T7xL-bi QI\,\—H_

Xc and two independent outputs #nd Yz is: |

1 CS part. product + 3 CS numbers |

Yg= X1 0 X, 0 X, (18) TFezbo

Yo = XX DX Xe XX - (19) | Vector-Merging-Adder | 8b
Typically Yg feeds X, X, and Y feeds X of the next [—\
adder stage. Comparing (18) and (2) we see that both logi- 4\0 b
cal functions involve XOR gates to calculate their result. In)
fact, if X in (18) is forced to logical 0 andYof the feed- 40-b
ing full-adder stage is left open, we can use the full-adder to bus out

perform the XOR operation needed in (2). Beyond the logi-
cal function of a basic cell, also the cell interconnection

Fig. 2 Block diagram of a 17-b binarnaF(28) multiplier

scheme of a binary partial product reduction array can bg-hematic of a signed17x8-bit multiplication and PPR array
maintained, because as we can conclude from (2), (5), (184sed on a Wallace-tree [10] for (signed) integers, that
and (19) itis equal for binary as well as for finite field addishares the cells with an 8-bit Finite Field multiplier as dis-
tion arrays. cussed in [4] to perform (8). This array is part of a

For physical implementation a binary partial product reducy 7x17-bit combined binary ar@F(28) multiplier depicted

tion (PPR) array is usually divided into subarrays to yield g, Fig. 2 and consists of 6 different cells. Fig. 2 shows how
better regularity [9]. For merging the two different modulo-the complete multiplier is divided into two equal 17x8-bit
addition arrays representing (6) and (8) with a binary PPRpR arrays in carry-save (CS) format and one CS PPR
array, we propose to split the binary PPR array in at leagfray which calculates the sum of the highest order partial
two equally sized parts with an adder column of lengthyroduct and the two 17x8-bit PPR arrays. A multiplexer
m-2. Each part houses logic for GPj2addition ((6), (8)) (MUX) after the final vector merging adder can select
and binary addition concurrently. Fig. 1 shows a simplifiedpetween the result of the binary and G®(ultiplication.

IR TI

Xo¥2| Full Adder
X1Y1| with three
XoYo| bit-product

XoYs XoY oY oY oY
X1y X1 X1y [X1Y. [X1Y: X1y
XY XY X2y XaY: [XaY. X2y

X3y X3y, XY X3y X3y X3y

STy

V.

]

J-I X, X4 X, X4y
X5
[X6:

X6y [¥6Y

S2a C24523 Cos522 C22521C21520 CacS10 CioS18 C16517 CirS16C16515 Ci5514 C14813 C15512C1511 C1sS10CacSe CoSg Cg S €1 S CoSs CuSy S
Fig. 1 Design example of a 17x8-bit combined multiplier PPR array

S

s S

e

Multiply Mode S

In Fig. 1 Full-adders employed for binary and GE(Bhul- precalculated lookup tables would be used, our approach
tiplication concurrently are depicted darker. To perform (@uld still be about 2 times faster. For longer codes the
the array Fig. 1 can easily be used in the same mannerbenchmark results become even better for our datapath.

4.2 GF(2™M Division and GF(2™ Exponentiation 6. CONCLUSIONS

As we have shown in chapter 3, division and exponentiafipny, e geveloped a VLSI architecture for all basic arith-

over Finite Fields can be calculated by continuous sayatg., operations over Finite Fields for implementation on

operations. Our studies on implementing Euclid’s alQ@DSDSP datapath. Multiplication, inversion, exponentia-

rithm [7] did not lead to a simple and feasible design residlf; “and addition ove®F(2™ can be computed. We pro-

However, a quotient or an exponentiation cannot ,8€eq 15 jmplement exponentiation and addition based on
obtained in one clock cycle with the proposed architect &

but it still accelerates calculations by orders of magnitu
Beyond that, no extra hardware on the datapath needs {9,
added and programming becomes more transparent.

tiplication. A simple implementation of an arithmetical
tiplication unit has been introduced, which can process
numbers and elements of a Finite Field as well.

7. REFERENCES

[1] S. Lin and D. J. Costello, JError Control Coding:
Fundamentals and Application&nglewood Cliffs,
NJ: Prentice-Hall, 1983.

[2] G. Fettweis, ,DSPs for Mobile Communications:
Where are we going?,” Proc. of ICASSP 1997.

[3] B. A. Laws Jr. and C. K. Rushforth, ,A Cellular-
Array Multiplier For GF(2™),* IEEE Transactions on

databus a]

databus o N ——]

— UL T

MUX 1/ \MUX
[T [T

D

feedback bus 2

feedback bus 1
\ &
=

REG Computerspp. 1573-1578, Dec. 1971.
[4] W. Drescher and G. Fettweis, ,VLSI Architectures
| ACCUMULATOR | for Multiplication in GF(2™) for Application Tailored

I databus ¢ Digital Signal Processors," Proc. of 1996 IEEE Work-
' shop on VLSI Signal Processing.
Fig. 3 Block diagram of the GF{ arithmetical unit [5] E. R. Berlekamp, ,Bit-Serial Reed-Solomon Encod-

. . . . ers,” IEEE Transactions on Information Thepmpl.
Fig. 3 shows a block diagram of a simple architecture for |15 15 6 Dp. 869|-874 Nov. 1982.| oRo

Finite Field datapath. If REGL1 is replaced by a secogﬁ C. C. Wang, T. K. Troung, H. M. Shao, L. J. Deutsch
accumulator, this architecture can be partly found in presenit ;4| ‘s Reed. VLS| Architectures For Clomputing,

DSPs. For the computation of multiplications databus a and Multiplications and Inverses @BF(2™),* IEEE Trans-
b feed the two factors. The result is stored in the accumula- ;tions on Compvol. ¢-34, pp. 709-717, Aug. 1985.

tor. For squaring databus b is used only. Division is m%@e Y.-J. Jeong and W. Burleson, ,VLSI Array Synthesis

complex and uses the accumulator and REG1. During the ¢, povnomial GCD Computation and Application to
first division step the divisor (databus b) is squared and the Finite Field Division,“IEEE Transactions on Circuits

result is stored in both registers. After that, the content of _

REGL1 is squared again and the multiplication of this squifg haﬂr?KIS)'/_'sgigr?)pvszl Sg;g[;\e/;. 19I??ii$erial Systolic
to the content of the accumulator is performed alternat y13 Divider and ,Multiplier for Finite FieldsGF(2™)*
After the -1t step the inverse of the divisor is located i |EEE Transactions on Computereol. 41, pp 9}2_
the accumulator and is multiplied to the dividend (databus 980, Aug. 1993, Lo

a). For exponentiation first REG1 has to be preset to 5? G.J. Hekstra. R. Nouta. .A Fast Parallel Multipli
- J. , R. ' plier
value ofa® (01H). Then, squaring of the content of REGE Architecture,” Proc. of 1992 IEEE International Sym-

and the multiplication t@ (databus a or b), dependent on posium on Circuits and Systems.

the currently active bit of the exponent, is performed altefi'O]C S. Wallace, ,A Suggestion for A Fast Multiplier,*
nately. During the last step of this operation the result'iS”|EEE Transactions on Elec Computersl. EC-13 ’
stored in the accumulator. pp. 14-17, Jan. 1964. ' ' '

5. BENCHMARKS [11]P.A. Scott, S.J. Simmons, S.E. Tavares, L.E. Peppard,

JArchitectures for Exponentiation iGF(2™),* IEEE
Benchmarks for a Reed-Solomon (255,223) decoder imple- Journal on Selected Areas in Communicatjops.

mented on a TMS320C25-50 DSP compared to an imple- 578-586, April . 1988.

mentation of our proposed datapath architecture haye]A. G. Akritas, Elements of Computer Algebrhlew
shown, that an implementation with our proposed architec- York, NJ: Wiley, 1989.

ture is more than 10 times faster if the Finite Field opera-

tions are carried out on the DSP in an algorithmic way. If

