
VLSI ARCHITECTURE FOR DATAPATH INTEGRATION OF ARITHMETIC

OVER GF(2m) ON DIGITAL SIGNAL PROCESSORS

Wolfram Drescher, Kay Bachmann, and Gerhard Fettweis

Mobile Communications Systems

Dresden University of Technology, D-01062 Dresden

drescher,bachmann,fettweis@ifn.et.tu-dresden.de

ABSTRACT

This paper examines the implementation of Finite Field
arithmetic, i.e. multiplication, division, and exponentiation,
for any standard basisGF(2m) with m≤8 on a DSP
datapath. We introduce an opportunity to exploit cells and
the interconnection structure of a typical binary multiplier
unit for the Finite Field operations by adding just a small
overhead of logic. We develop division and exponentiation
based on multiplication on the algorithm level and present a
simple scheme for implementation of all operations on a
processor datapath.

1. INTRODUCTION

Arithmetic over Finite Fields is usually applied in coding
theory, cryptography and their applications [1]. Even
though there would exist many applications in mobile and
satellite communication, codes based on Finite Fields are
not commonly used yet. For example, BCH codes have
very desirable properties regarding burst error correction,
but are currently not used in mobile communication net-
work systems. At present, hardware providers offer a vari-
ety of chipsets for specific applications having heavy
constraints for arithmetic over Finite Fields and therefore
code properties as well. For applications based on flexible
field width and variable primitive polynomials, to our
knowledge, no hardware solution is available. If program-
mable logic components would be utilized for Finite Field
arithmetic, the programmer could freely choose between
different codes for different applications. That means, any
theoretical designed code could be easily customized to
hardware implementations using a programmable proces-
sor. No longer would special and expensive circuits need to
be designed for a particular system implementation. The
system implementation and testing could be executed
straightforwardly in a software environment. Once DSPs
support Finite Field arithmetic, we anticipate a break-
through even for low budget coding applications.

2. DATAPATH DESIGN REQUIREMENTS FOR
DOMAIN SPECIFIC DSPs

A processor datapath is where the vital arithmetic manipu-

lations of operands take place. To achieve a higher perfor-
mance, a DSP datapath is specialized on the types of
computations mostly performed in signal processing.
Present DSPs support these computations by functional
units as multiplier-accumulators, bit manipulation units or
barrel shifters. As demand grows for Domain Specific Digi-
tal Signal Processors (DSDSP) for special applications, e.g.
in mobile communications systems, manufacturers have
begun to tailor their processors to the algorithms of the
application for which the DSP was requested. For the
datapath this means more functionality and parallelism
needs to be added [2].
Our intention was to design a datapath for a DSDSP for the
domain of error correction coding1. From the arithmetical
point of view, this requires addition, multiplication, divi-
sion, and exponentiation over Galois Fields. However, in
addition conventional binary fixed point multiply and accu-
mulate operation as a basic feature of a DSP need to be sup-
ported as well.

3. ALGORITHMIC APPROACH FOR ARITH-
METIC OVER FINITE FIELDS GF(2m)

The first non sequential architecture for Finite Field Multi-
plication was described in [3]. In [4] an attempt has been
made to integrate a Finite Field multiplier in a economical
way on a DSDSP datapath. In this paper, we go one step
further and present an architecture for integration of all
important arithmetical operations over Finite Fields on a
DSDSP datapath.
Many papers have focused on performing arithmetic over
Finite Fields in a sequential way [5], [6], or by using sys-
tolic structures [7], [8]. Mostly, these approaches exploit
properties of normal basis and cannot be applied for stan-
dard basis. Hence, they cannot be used for programmable
architectures. Our proposed architecture allows a general
usage for any standard basis Finite Field.
Finite fields, so called Galois fields, consist of pm elements
where p is a prime and m∈N - {0}. GF(pm) is an extension
field of GF(p). Codes with symbols from the binary field

1. This work was sponsored in part by the Deutsche Forschungs-
gemeinschaft within the Sonderforschungsbereich SFB 358

GF(2) of 2 elements (GF(2) = {0,1}) or its extension
GF(2m) are most widely used in digital systems.
α is a root of a primitive irreducible polynomial
f(x) = xm+fm-1x

m-1+ … + f1x+f0 in GF(2m). All nonzero
elements ofGF(2m) can be represented as powers of a
primitive element α. Since f(α) = 0 , α = fm-1αm-1+ …
+ f1α + f0 , i.e. an element ofGF(2m) can be expressed as a
polynomial ofα with degree less than m. The polynomial
representation is used to represent the finite fieldGF(2m).
Since the elements of a Finite Field can be represented by
vectors with its coefficients fromGF(2) {0,1}, the addition
in GF(2m) is equivalent to the subtraction. Hence both oper-
ations can be realized by the same hardware. In contrast to
addition, the computation of multiplication and division
over Finite Fields is more difficult. Following, basic algo-
rithms for multiplication, division, and exponentiation over
GF(2m) will be discussed.

3.1 Multiplication

If A = a0 + a1α +…+ a1αm-1 and B= b0 + b1α +…+ b
m-1αm-1are two elements fromGF(2m), then

A + B = C = c0 + c1α … + cm-1αm-1 , (1)

with ci = ai + bi mod 2 (0≤ i ≤ m-1). (2)

Hence, addition overGF(2m) can be realized easily by m
independent XOR gates. Multiplication overGF(2m) is
defined through

a(x) ⊗ b(x) := a(x)·b(x) mod f(x). (3)

It can be calculated by building partial products

Pi(x) = a(x) · bix
i (0 ≤ i < m) (4)

first. Second, all partial productsPi(x) have to be added
modulo 2. A partial resultCp(x) can be obtained with

Cp(x) = ∑ Pi(x) mod 2 (5)

Cp(x) = c0 + c1x + … + c2m-2x
2m-2 (6)

which is obviously not an element of the fieldGF(2m). To
reduce the highest order termxh of Cp(x) the property of the
irreducible polynomial

xm = f0 + f1x + … + fm-1x
m-1 (7)

is exploited. The substitution starts with the highest order
term c2m-2x2m-2 from (6). (7) is used to produce a partial
resultC‘p of one degree less thanCp:

C‘p(x) = [c0 + c1x + … + c2m-2x
2m-3] +

[f0 ·xm-2+ f1x·xm-2+ … + fm-1x
m-1·xm-2]. (8)

This operation is altered untilC‘p(x) is of degree m-1, i.e. it
becomes an element ofGF(2m). Details are given in [12].

3.2 Division

Division is not directly defined in a straight forward manner
in a Finite Field. However, a possibility to perform division
overGF(2m) is by multiplication of the inverse element of a
divisor β with the dividendγ :

(9)

It turn out that the real problem of division overGF(2m) is
to find an efficient computation algorithm for the multipli-
cative inverse element of the divisor. Two algorithms are
known:

 - Euclid’s algorithm [12],
 - Continuous square algorithm.

In this paper, the continuous square algorithm is used which
is based on a fundamental property ofGF(2m):

. (10)

We multiply (10) byγ-1 and get (11):

(11)

Since

(12)

γ-1 can be computed successively by squaring and multipli-
cation. To give an example, we use GF(24). Since 14 = 2 +
4 + 8 ,

. (13)

3.3 Exponentiation

Exponentiation over Finite Fields is useful for decoding
Reed-Solomon-Codes, e.g. for Forney‘s algorithm to com-
pute error values. A simple algorithm for exponentiation
over GF(2m) based on multiplication was proposed in [11]:

y = βe with β ∈ GF(2m) e ∈N (14)

Each integer can be presented in its binary representation as
a n-bit-vector according to (14).

e = e0 + e12 + e22
2 + ... + en - 12

n - 1 (15)

The substitution of (15) into (14) leads to:

(16)

and

(17)

From (15) and (16) an exponentiation algorithm can be
derived:

y = 1
for i = n - 1to 0

{ y = y2

 if ei = 1 then y = β ⋅ y
}

βe= y

β
γ
--- β γ 1–⋅=

γ2
m

1–
1=

γ 1– γ2m 1– γ 1– γ2m 2–=⋅=

2
m

2 2
i

i 1=

m 1–

∑=–

γ14 γ2 γ4 γ8 γ 1–=⋅ ⋅=

y β
e0 e12 e22

2 … en 1– 2n 1–+ + + +

y β
e0 β

e12 β
e22

2

… β
en 1– 2n 1–

y

+ + + +

β
e0 β

e1 β
e2 … β

en 1–()
2

()
2

()
2

()
2

=

=

=

β
ei

β if ei 1=

1 if ei 0=

=

4. IMPLEMENTATIONAL APPROACH

4.1 Multiplication

In [4] opportunities have been investigated to merge a con-
ventional binary multiplier and a multiplier overGF(2m) at
the gate-level. This leads to a new multiplier architecture
that performs both types of multiplications employing the
same logical cells with a low complexity and a marginal
propagation overhead. This architecture will serve as the
basis for our error correction coding DSDSP datapath intro-
duced in this paper.
The switching function of a full-adder with 3 inputs X1, X2,
XC and two independent outputs YS and YC is:

YS = X1 ⊗ X2 ⊗ XC , (18)

YC = X1X2 ∨ X1XC ∨ X2XC . (19)

Typically YS feeds X1, X2 and YC feeds XC of the next
adder stage. Comparing (18) and (2) we see that both logi-
cal functions involve XOR gates to calculate their result. In
fact, if XC in (18) is forced to logical 0 and YC of the feed-
ing full-adder stage is left open, we can use the full-adder to
perform the XOR operation needed in (2). Beyond the logi-
cal function of a basic cell, also the cell interconnection
scheme of a binary partial product reduction array can be
maintained, because as we can conclude from (2), (5), (18)
and (19) it is equal for binary as well as for finite field addi-
tion arrays.
For physical implementation a binary partial product reduc-
tion (PPR) array is usually divided into subarrays to yield a
better regularity [9]. For merging the two different modulo-
addition arrays representing (6) and (8) with a binary PPR
array, we propose to split the binary PPR array in at least
two equally sized parts with an adder column of length
m-2. Each part houses logic for GF(2m) addition ((6), (8))
and binary addition concurrently. Fig. 1 shows a simplified

Fig. 2 Block diagram of a 17-b binary /GF(28) multiplier

schematic of a signed17x8-bit multiplication and PPR array
based on a Wallace-tree [10] for (signed) integers, that
shares the cells with an 8-bit Finite Field multiplier as dis-
cussed in [4] to perform (8). This array is part of a
17x17-bit combined binary andGF(28) multiplier depicted
in Fig. 2 and consists of 6 different cells. Fig. 2 shows how
the complete multiplier is divided into two equal 17x8-bit
PPR arrays in carry-save (CS) format and one CS PPR
array which calculates the sum of the highest order partial
product and the two 17x8-bit PPR arrays. A multiplexer
(MUX) after the final vector merging adder can select
between the result of the binary and GF(2m) multiplication.

Multiply 17x8-bit,
CS 8 part. products

Multiply 17x8-bit,
CS 8 part. products

1 CS part. product + 3 CS numbers

MUX

Vector-Merging-Adder

17-b

46-b

62-b

40-b

40-b

46-b

17-b

17-b

17-b

8-b

17-b

8-b

Multiply 17x1-bit

17-b
bus a bus b bus c

40-b

bus out

Fig. 1 Design example of a 17x8-bit combined multiplier PPR array

&
&
x0y0x0y2

x1y1
x2y0

x0y3
x1y2
x2y1

x0y1
x1y0

x0y4
x1y3
x2y2

x0y5
x1y4
x2y3

x0y6
x1y5
x2y4

x3y3 x3y2 x3y1 x3y0

x0y7
x1y6
x2y5

x0y8
x1y7
x2y6

x0y9
x1y8
x2y7

x0y10
x1y9
x2y8

x0y11
x1y10
x2y9

x0y12
x1y11
x2y10

x0y13
x1y12
x2y11

x0y14
x1y13
x2y12

x0y15
x1y14
x2y13

x0y16
x1y15
x2y14

x1y16
x2y15x2y16

x3y7 x3y6 x3y5 x3y4x3y11 x3y10 x3y9 x3y8
x3y15 x3y14 x3y13 x3y12x3y16

&

S0S4C4S5C6S6C7S7C8S8C9S9C10S10C11S11C12 S1S2S3S12C13S13C14S14C15S15C16S16C17S17C18S18C19S19C20S20C21S21C22S22C23S23C24S24

x0y2
x1y1
x2y0

Full Adder
with three
bit-product

& x4y2
x5y1
x6y0

x4y3
x5y2
x6y1

x4y1x4y4
x5y3
x6y2

x4y5
x5y4
x6y3

x4y6
x5y5
x6y4

x4y7
x5y6
x6y5

x4y8
x5y7
x6y6

x4y9
x5y8
x6y7

x4y10
x5y9
x6y8

x4y11
x5y10
x6y9

x4y12
x5y11
x6y10

x4y13
x5y12
x6y11

x4y14
x5y13
x6y12

x4y15
x5y14
x6y13

x4y16
x5y15
x6y14x6y15x6y16

x5y16 x5y0 &
x4y0

x3y3 x3y2 x3y1 x3y0
x3y7 x3y6 x3y5 x3y4x3y11 x3y10 x3y9 x3y8

x3y15 x3y14 x3y13 x3y12x3y16

M
ul

tip
ly

 M
od

e
S

el
ec

t

inputs

In Fig. 1 Full-adders employed for binary and GF(2m) mul-
tiplication concurrently are depicted darker. To perform (6),
the array Fig. 1 can easily be used in the same manner.

4.2 GF(2m) Division andGF(2m) Exponentiation

As we have shown in chapter 3, division and exponentiation
over Finite Fields can be calculated by continuous square
operations. Our studies on implementing Euclid´s algo-
rithm [7] did not lead to a simple and feasible design result.
However, a quotient or an exponentiation cannot be
obtained in one clock cycle with the proposed architecture,
but it still accelerates calculations by orders of magnitudes.
Beyond that, no extra hardware on the datapath needs to be
added and programming becomes more transparent.

Fig. 3 Block diagram of the GF(2m) arithmetical unit

Fig. 3 shows a block diagram of a simple architecture for
Finite Field datapath. If REG1 is replaced by a second
accumulator, this architecture can be partly found in present
DSPs. For the computation of multiplications databus a and
b feed the two factors. The result is stored in the accumula-
tor. For squaring databus b is used only. Division is more
complex and uses the accumulator and REG1. During the
first division step the divisor (databus b) is squared and the
result is stored in both registers. After that, the content of
REG1 is squared again and the multiplication of this square
to the content of the accumulator is performed alternately.
After the 2m-1th step the inverse of the divisor is located in
the accumulator and is multiplied to the dividend (databus
a). For exponentiation first REG1 has to be preset to the
value ofα0 (01H). Then, squaring of the content of REG1
and the multiplication toβ (databus a or b), dependent on
the currently active bit of the exponent, is performed alter-
nately. During the last step of this operation the result is
stored in the accumulator.

5. BENCHMARKS

Benchmarks for a Reed-Solomon (255,223) decoder imple-
mented on a TMS320C25-50 DSP compared to an imple-
mentation of our proposed datapath architecture have
shown, that an implementation with our proposed architec-
ture is more than 10 times faster if the Finite Field opera-
tions are carried out on the DSP in an algorithmic way. If

ACCUMULATOR

databus a
databus b

databus c

MUX 2

REG 1

⊗ fe
ed

ba
ck

 b
us

 2

fe
ed

ba
ck

 b
us

 1

MUX 1

precalculated lookup tables would be used, our approach
would still be about 2 times faster. For longer codes the
benchmark results become even better for our datapath.

6. CONCLUSIONS

We have developed a VLSI architecture for all basic arith-
metical operations over Finite Fields for implementation on
a DSDSP datapath. Multiplication, inversion, exponentia-
tion, and addition overGF(2m) can be computed. We pro-
posed to implement exponentiation and addition based on
multiplication. A simple implementation of an arithmetical
multiplication unit has been introduced, which can process
binary numbers and elements of a Finite Field as well.

7. REFERENCES

[1] S. Lin and D. J. Costello, Jr.,Error Control Coding:
Fundamentals and Applications, Englewood Cliffs,
NJ: Prentice-Hall, 1983.

[2] G. Fettweis, „DSPs for Mobile Communications:
Where are we going?,“ Proc. of ICASSP 1997.

[3] B. A. Laws Jr. and C. K. Rushforth, „A Cellular-
Array Multiplier ForGF(2m),“ IEEE Transactions on
Computers, pp. 1573-1578, Dec. 1971.

[4] W. Drescher and G. Fettweis, „VLSI Architectures
for Multiplication in GF(2m) for Application Tailored
Digital Signal Processors,“ Proc. of 1996 IEEE Work-
shop on VLSI Signal Processing.

[5] E. R. Berlekamp, „Bit-Serial Reed-Solomon Encod-
ers,“ IEEE Transactions on Information Theory, vol.
IT-28, no. 6, pp. 869-874, Nov. 1982.

[6] C. C. Wang, T. K. Troung, H. M. Shao, L. J. Deutsch,
and I. S. Reed, „VLSI Architectures For Computing
Multiplications and Inverses inGF(2m),“ IEEE Trans-
actions on Comp., vol. c-34, pp. 709-717, Aug. 1985.

[7] Y.-J. Jeong and W. Burleson, „VLSI Array Synthesis
for Polynomial GCD Computation and Application to
Finite Field Division,“IEEE Transactions on Circuits
and Systems, pp. 891-897, Dec. 1994.

[8] M.A. Hasan, V.K. Bhargava, „Bit-Serial Systolic
Divider and Multiplier for Finite FieldsGF(2m),“
IEEE Transactions on Computers, vol. 41, pp. 972-
980, Aug. 1993.

[9] G.J. Hekstra, R. Nouta, „A Fast Parallel Multiplier
Architecture,“ Proc. of 1992 IEEE International Sym-
posium on Circuits and Systems.

[10]C.S. Wallace, „A Suggestion for A Fast Multiplier,“
IEEE Transactions on Elec. Computers, vol. EC-13,
pp. 14-17, Jan. 1964.

[11]P.A. Scott, S.J. Simmons, S.E. Tavares, L.E. Peppard,
„Architectures for Exponentiation inGF(2m),“ IEEE
Journal on Selected Areas in Communications, pp.
578-586, April . 1988.

[12]A. G. Akritas,Elements of Computer Algebra, New
York, NJ: Wiley, 1989.

