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ABSTRACT

This paper describes a new direction sequence generation
method for the circular CORDIC algorithm. A conventional
approach employs an angle computation algorithm to con-
trol the direction of rotation in the form of a sign sequence,
where the sign generation is a bottle-neck for the fast im-
plementations. The proposed method reduces the number
of sequential computations by employing a new angle repre-
sentation model and linearizing the arctangent function in
small angles. The direction sequence can be generated by
about a third of the iterative computations required in the
conventional algorithm, which also reduces the hardware re-
quirements as much. Especially, this algorithm is attractive
when pipelining is not allowed for feedback control, such as
found in phase tracking applications. A VLSI implemen-
tation example for a high-speed quadrature demodulator is
also discussed.

1. INTRODUCTION

The CORDIC (COordinate Rotation DIgital Computer) is
an iterative arithmetic algorithm for computing many ele-
mentary functions, which frequently appear in modern sig-
nal processing computing algorithms, such as the Toeplitz
system solver, the lattice �lter, the QR factorization, and
the fast Fourier transform[1]. The basic operation is to ro-
tate a 2�1 vector through an angle using a linear, circular,
or hyperbolic coordinate system. This is accomplished by
rotating the vector through a sequence of elementary angles
whose algebraic sum approximates the desired rotation an-
gle. In this paper, we only consider the circular CORDIC
algorithm which can be e�ciently used in digital communi-
cation systems, such as the DDFS (Direct Digital Frequency
Synthesizer)[2].
The basic iterative formulation of the circular CORDIC

algorithm can be summarized as follows.
Given a rectangular coordinate, [xin yin]

t, and the rota-
tion angle, zin, initialize as

x(0) = ��(0)yin (1)

y(0) = +�(0)xin (2)

z(0) = zin � �(0)a(0) (3)

and compute for i = 1; 2; : : : ; n� 1

x(i) = x(i� 1)� �(i)21�iy(i� 1) (4)

y(i) = y(i� 1) + �(i)21�ix(i� 1) (5)

z(i) = z(i� 1)� �(i)a(i) (6)

where f�(i)g is a sign sequence indicating the direction of
rotation and obtained by

�(i) =

�
sign[zin]; i = 0
sign[z(i� 1)]; i � 1

(7)

and a(i) is the elementary angle and given by

a(i) =

�
�

2
; i = 0

arctan(21�i); i � 1
(8)

A conventional method computes the direction sequence
by using Eq. (3) and Eq. (6), which requires the sign de-
tection result in the previous stage. Thus, the sequential
nature of the angle computation inhibits the fast imple-
mentation of a CORDIC processor. Our previous study on
the hardware requirements of the parallel CORDIC proces-
sor showed that the angle computation hardware requires
about a third of the area occupied by the angle rotation
hardware.
In this paper, a new direction sequence generation

method which requires much less number of sequential
computations is developed. Although the conventional
CORDIC algorithm determines the direction of rotation
sequentially at each stage, the direction sequence can be
determined non-recursively when the remaining angle to
rotate is small. In the proposed method, the direction
sequences that correspond to large angles are determined
in a sequential manner, but those of small angle portions
are generated directly. Madisetti's method also utilizes
the linear approximation of tangent function[3], but it re-
quires multiplications for the angle rotation. Our developed
method retains the simplicity of the CORDIC angle rota-
tion while not only reducing the angle computation hard-
ware but also improving the speed as well.

2. NEW ANGLE REPRESENTATION MODEL

The actual rotation angle obtainable by the circular
CORDIC algorithm is given by A =

P
n�1

i=0
�(i)a(i), where

a sign sequence �(i) represents the angle A. Recoding �(i)
by the relation, �(i) = 2bi � 1, results in

A =

n�1X
i=0

(2bi � 1)a(i) =

n�1X
i=0

bi � 2a(i) �

n�1X
i=0

a(i) (9)
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Figure 1. Actual rotation angle vs. binary repre-

sentation

Table 1. Indices for linear approximation

m 1 2 3 4 5 6

n 4 7 9 12 15 18

where fbig is a binary sequence which directs the angle rota-
tion in such a way that bi = 1 means rotation by +a(i) and
bi = 0, by �a(i). The rotation angle A can be represented

by a binary number B =
P

n�1

i=0
bi2

n�i�1. We named this
representation a BSR (Binary Sequence Representation).
Figure 1 shows the actual values of A represented by B

when n = 9. Note that the curve looks piece-wise linear,
because the arctangent function is approximately linear for
small angles. Using this property, small elementary angles
can be approximated as 2a(i) = 2 arctan(21�i) � s � 2n�i�1

for i � m, where m is an integer which makes the approx-
imation tolerable and s is the slope of the linearity. Then
the following approximation can be derived.

n�1X
i=m

bi � 2a(i) � s �

n�1X
i=m

bi � 2
n�i�1 (10)

For keeping the monotonically increasing tendency of the
actual rotation angle according to the increase of the cor-
responding BSR, the condition of a(m) >

P
n�1

i=m+1
a(i)

should be satis�ed. Table 1 shows the computed m and
n satisfying the condition, where we can �nd that m is only
about a third of n. Thus, the number of stages which re-
quire the sequential determination of the direction control
is only a third of the total stages. Dividing Eq. (10) by s

gives the following approximation.

1

s

n�1X
i=0

bi � 2a(i) �

m�1X
i=0

bi �
2a(i)

s
+

n�1X
i=m

bi � 2
n�i�1

=

n�1X
i=0

bi � 2
n�i�1 �R(b0b1b2 : : : bm�1) (11)

where the �rst term is a BSR of the angle and R(�) is the an-
gle adjustment value which relates the BSR and the actual
rotation angle. R(�) is only dependent on b0b1b2 : : : bm�1
and given by

R(b0b1b2 : : : bm�1) =

m�1X
i=0

bi � 2
n�i�1 �

m�1X
i=0

bi �
2a(i)

s
(12)

3. DIRECTION SEQUENCE GENERATION

Using the new angle representation model, the direction se-
quence generation algorithms and its implementation meth-
ods are developed. Firstly, the absolute angle rotation case
is studied, where the CORDIC algorithm is used for rotat-
ing a rectangular coordinate by an absolute angle. Secondly,
the accumulated angle rotation case is studied, which can
be used for continuous phase rotation applications, such as
the phase tracking system.

3.1. Absolute Angle Rotation

When the rotation angle A is required, we have to �nd
a binary sequence fbig which satis�es

P
n�1

i=0
bi � 2a(i) =

(A + A0) mod 2�, where A0 =
P

n�1

i=0
a(i) is a constant.

This value should be normalized to the level of the BSR
by multiplying 1=s. The �rst m bits of the BSR cannot be
directly obtained due to the nonlinearity of the arctangent
function, thus it needs to be obtained by the comparison
with the elementary angles. The rest of the bits can be di-
rectly determined because the linear approximation is valid.
The following algorithm summarizes this procedure.

Algorithm 1 BSR computation

Â = (A+ A0) mod 2�;

B̂ = 1
s
Â;

for i = 0 to m� 1 do begin /* recursive

if B̂ >
2a(i)

s
then computing */

B̂ = B̂ � 2a(1)

s
;

bi = 1
else

bi = 0;
end for;

B = B̂;
for i = 0 to m� 1 do begin /* non-recursive

B = B + bi � 2
n�i�1; computing */

end for;

Note that only the initial �xed angle addition and �rstm it-
erations are needed for generating all the direction sequence
while the conventional angle computation algorithm needs
n� 3 iterations.

When the angle is given as a binary number which is
normalized to a power of two, the �rst two iterations need
no computation and the multiplication by 2n=2�s is needed
for proper scaling to the level of the BSR. Note that the
multiplication of 2n=2�s is very simple, which is composed
of only two stages of addition when n = 9. The bottleneck
that limits the speed is the sign generation of the middle
m � 2 iterations, which corresponds to only one iteration
when n = 9.



3.2. Accumulated Angle Rotation

There are applications such as the phase tracking system
which does not require the absolute angle, but only the
accumulated angle which satis�es A[k + 1] = A[k] + 
[k]
where A[k] is the phase and 
[k] is the frequency [2][3][4].
In this case, all the angles need not be converted from the
real angle values to the BSRs. A method which accumulates
angles in the form of the BSR is devised.

For simplifying hardware complexity, we want to com-
pute the next accumulated angle from the present one in
the form of the BSR as B[k + 1] = B[k] + C[k] +M [k]
where B and C are the BSR of A and 
, respectively, and
M [k] compensates for the error due to the direct addition of
two BSR angles. The direct addition brings about problem
when the carry is propagated to the upper position, because
a(i) = 2a(i+ 1) is not satis�ed for all i. Carry propagation
occurs by the addition of 2n�i�2 + 2n�i�2 = 2n�i�1. The
left side of the equation actually means 2a(i+1)

s
+ 2a(i+1)

s
=

2a(i)

s
+
�
4a(i+1)

s
� 2a(i)

s

�
and the right side means 2a(i)

s
.

Thus, when the carry is propagated to the i-th elementary
angle position, the value in the parenthesis should be added
for correction. When i = 0, the correction value is zero be-
cause a(0) = 2a(1) and the correction values for i � m

is approximately zero because of the initial assumption of
linearity. Hence, the total correction value is given by

M(u1u2 : : : um�1) =

m�1X
i=1

ui �

�
4a(i+ 1)

s
�

2a(i)

s

�
(13)

where ui is the carry propagated to the i-th elementary an-
gle position. The following algorithm enables the addition
of the BSR angles.

Algorithm 2 Addition of the BSR angles

Z = B +C; U = Carm�11 [B + C];
while U 6= 0 do begin

Z = Z +M(U); U = Carm�11 [Z +M(U)];
end while;

where Carm�11 means the concatenation of the carries prop-
agated to the i-th position for 1 � i � m � 1 and M(U)
is the correction value given in Eq. (13). Note that the
correction can propagate the carries again, thus the correc-
tion should be performed repeatedly until there is no carry
propagation. Actually, the number of repeated carry prop-
agation is restricted to m� 1.

4. IMPLEMENTATION EXAMPLE

We have developed a VLSI for the quadrature demodula-
tion using the proposed CORDIC architecture. In phase
tracking applications, the frequency of the quadrature os-
cillator is represented as 
[k] = 
0+�
[k], where 
0 is the
nominal frequency and �
[k] is a relatively small frequency
error [5]. Conventionally 
0 = �=2 so that one cycle can be
obtained at every four samples. When �
[k] � 0, the BSR
of 
[k], C[k] can be written as

C[k] = C0 +�C[k] = 2n�2 +�C[k] (14)

c3 c4 c5 c6 c7 c8

b0 b1 b2 b3 b4 b5 b6 b7 b8

adder

register

c9 c10

Figure 2. Circuit diagram for angle accumulator

where �C[k] < 2n�m is assumed. When �
[k] < 0, the
BSR of 
[k] can be written as

C[k] =

 
m�1X
i=2

2n�i�1 +
2a(1)

s
�

m�1X
i=2

2a(i)

s

!
+�C[k] (15)

where the representation of C0 is modi�ed for the nega-
tive �C[k]. The frequency control input 
0 + �
[k] can
be implemented by a simple addition if �C[k] satis�es the
following condition.

�
2a(1)

s
+

m�1X
i=2

2a(i)

s
� �C[k] < 2n�m (16)

which is an allowable restriction for the phase tracking ap-
plication.

Logic design is considered for the hardware implementa-
tion. The case of n = 9 is considered, which requires m = 3.
The correction value in Eq. (13) for each ui is as follows:

M(u1) = 18:0 � 000010010

M(u2) = 3:78 � 000000100

The nominal frequency C0 for �=2 is

C0 =

�
010000000; �C[k] � 0
001101010; �C[k] < 0

(17)

The allowable range of �C[k] is �42 � �C[k] < 64, which
is acceptable for phase tracking applications. Figure 2
shows the accumulator circuit for this example, where the
dotted part can be appended for precise frequency control.

The block diagram of the total demodulator is shown
in Fig. 3, where the developed angle accumulator circuit is
employed for eliminating the angle computation block. The
dotted part can be inserted for the phase tracking. The
layout of the total demodulator is also shown in Fig. 4.
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Figure 3. Block diagram of the quadrature demod-

ulator chip

Figure 4. Layout of the quadrature demodulator

chip

5. COMPARISON WITH OTHER METHODS

When the absolute angle rotation is necessary, the conven-
tional algorithm requires n�3 iterative computations, con-
sidering that the �rst two and the last computations are
actually unnecessary for the properly scaled angle represen-
tation [2]. On the other hand, the proposed BSR method re-
quires approximately n=3 computations for the angle repre-
sentation scaled by s. When an accumulated angle is used,
the proposed phase accumulator circuit eliminates the angle
computation circuit.

Madisetti's angle rotation algorithm [3] also utilizes the
approximation of tan a(i) � a(i) = 2�k for small a(i), and
exploits the 8th wave symmetry of sinusoidal waves. The
direction sequence generation can be very fast, which re-
sults in a fast DDFS implementation. However, a third
of the total stages of the angle rotation require multiplica-
tions with the tangent values. These multiplications can
be implemented with multiplexers for the DDFS, but real
multiplications are required for a general circular rotator.
Thus, Madisetti's angle rotation algorithm is suited only for
the generation of sine and cosine waves. On the other hand,

the proposed BSR method only changes the angle compu-
tation for generating the direction sequence and the angle
rotation still consists of only shifts and additions. Thus,
the BSR method can be adopted for a rotator, which can
be used for the digital quadrature demodulation.

6. CONCLUSION

A new direction sequence generation method for the circular
CORDIC is developed by employing a new angle represen-
tation model. This method requires a third of the sequential
computations when compared with the conventional angle
computation algorithm. Thus, the hardware cost reduction
and the speed-up can be expected as much. This method
is more attractive when the applications require a higher
precision and do not allow the pipelining technique because
of the feedback control. A VLSI for the digital quadrature
demodulation employing the proposed method is developed
and the functionality is veri�ed.
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