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ABSTRACT

In this work, a fast radix-4 redundant CORDIC algo-
rithm with variable scale factor is proposed. The algorithm
includes an on-line scale factor decomposition algorithm
that transforms the complicated variable scale factor into a
sequence of simple shift-and-add operations and does the
variable scale factor compensation in the same fashion. On
the other hand, the on-line decomposition algorithm itself
can be realized with a simple and fast hardware. The new
CORDIC algorithm has the smallest number of 0.8n itera-
tions among all the CORDIC algorithms, which requires
only about two-third rotation number that of the existing
best (hybrid radix-2 and radix-4) redundant algorithms.
Therefore, the new algorithm achieves fast rotation itera-
tions, high-speed and low-overhead scale factor compensa-
tions, which are hard to attain simultaneously for the exist-
ing algorithms. The on-line scale factor compensation can
be also applied to the existing on-line CORDIC algo-
rithms.

1. INTRODUCTION

CORDIC [1,2] algorithm is an efficient scheme for
computing elementary functions especially for the trigo-
nometric functions. Since the algorithm can be realized as
a sequence of shift-and-add operations followed by a scale
factor compensation operation, it is very suited for VLSI
implementation and widely applied to DSP applications.

Most of the CORDIC algorithms assume a constant
scale factor for the ease of scale factor compensation.
However, they have to either do an accurate but slow deci-
sion operation for rotation direction or do rough direction
decision at the expense of extra compensation operations
[4], [6]. In addition, they have to rotate even when the
rotation angle has been converged. To speedup CORDIC
operations, the following techniques are widely used: (1)
applying carry-free redundant addition scheme [3-8]; (2)

fast decision of rotation direction with only a few most
significant digits (MSDs) of the related parameters [3-8];
(3) skipping unnecessary rotations; (4) recoding rotation
angle for saving rotation iterations; and (5) applying radix-
4 rotation scheme [5,10,13]. The the 2nd to 4th techniques
result in variable scale factors. Variable scale factors have
the trouble of complicated scale factor computation fol-
lowed by penalty compensation [7,8]. Due to the consider-
able overhead generated by variable scale factor, the exist-
ing radix-4 CORDIC algorithms resort to constant scale
factor approach [5,10,13]. However, these constant scale-
factor CORDICs are not pure radix-4 algorithms. In fact,
they are all hybrid radix-2 and radix-4 algorithms. As a
result, all these approaches have minorly reduced iteration
numbers, at the cost of control overheads. Ideally, a pure
radix-4 algorithm would achieve the best performance.

To alleviate the mentioned disadvantages related to
prior arts, a pure fast radix-4 redundant CORDIC algo-
rithm with variable scale factor is proposed. The algorithm
includes an on-line variable scale factor decomposition
algorithm that transforms the complicated variable scale
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line fashion, where δi, si ∈{-2,-1,0,1,2}. Here si only de-

pends on δi. Both δi and si can be easily determined by

estimating their corresponding intermediate variables with
very short wordlength. In all, the new algorithm has the
smallest number 0.8n of shift-and-add steps among all the
CORDIC algorithms. Therefore, the new CORDIC algo-
rithm achieves fast rotation iterations, high-speed and low-
overhead scale factor compensations, which are hard to
attain simultaneously for the existing algorithms. The on-
line scale factor compensation can be also applied to the
existing on-line CORDIC algorithms.



2. THE NEW RADIX-4 CORDIC ALGORITHM
FOR ROTATION MODE

Here, the new redundant CORDIC algorithm to be
proposed is based on the fast signed-digit addition (SDA)
[12]. The proposed radix-4 rotation mode algorithm for
initial vector of [X0,Y0] to be rotated by an angle of Z0 is

given as follows:

for i=0 to n/2+1

Xi+ 1=Xi+δi2
-2i-1Yi, Yi+ 1=Yi-δi2

-2i-1Xi,

Ri+ 1=4(Ri-2
2itan-1δi2

-2i-1) =22(i+1)Zi+1
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A simple selection rules (derived in Appendix B) for δi is

as follows,
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where Ri
^

 consists of the three most-significant fractional
digits of Ri. On the other hand, a simple selection rule

(derived in Appendix A) for si  can be obtained by defin-

ing the following iterative operations:
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where W0 2 1 1 0
2 2 2= − − + −ln( )δ , δ 0 0 1∈ ± ±{ , , }2 , A0=1,

K-1= An/2+1  for n-bit precision.
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where Wi
^

 is the five most-significant fractional digits of
Wi. The scale factor compensation can then be combined

with rotation iteration or executed after all the rotation
iterations are finished.

3. THE NEW RADIX-4 CORDIC ALGORITHM
FOR VECTORING MODE

Since the iterated vectors are scaled in magnitude in
each iteration and can only be tested after rotation, the
decision operations are slower and more complicated than
that of the rotation mode. For this reason, the proposed
new vectoring mode algorithm is still a hybrid radix-2 and
radix-4 one. However, the new algorithm reduces radix-2
iterations to four which is much smaller than the existing
n/2. Derivation of the new algorithm is more involved than
and similar to the rotation mode algortihm.

The new algorithm starts with four radix-2  iterations
based on the Ercegovac and Lang’s algorithm [7], fol-
lowed by (n-4)/2+1 radix-4 iterations based on a fixed
selection rule as follows, for i=0,1,...,(n-4)/2
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tional digits of Wi
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from the first 4 radix-2 iterations. The final result
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The resulted variable scale factor decomposition can be
performed similarly to the rotation mode on-line decompo-
sition algorithm.

4. PERFORMANCE COMPARISONS

To compare different redundant CORDICs for rotation
mode, we assume that a basic iteration step consists of a
shift operation and a 4-2 SDA. Combined with CORDIC
rotation iterations, the new scale factor decomposition
algortithm can compensate the final results in two different
schemes:

• Scheme-I: The n/2 additional shift-and-add compen-
sation operations are performed right after all the n/2
redundant CORDIC iterations have been done, namely

X s Xi i
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the CORDIC rotation results before scale factor com-
pensation. The final compensated results are
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/
*

2 1 2 1+ + and . Consequently, both rotation and

compensation operations need n/2 shift-and-add op-
erations. However, the probability of nonzero δi, si
∈{-2,-1,0,1,2} is 4/5. As a result, in average there are
(n/2)×2×4/5=0.8n shift-and-add operations.

••  Scheme-II: Each compensation iteration is performed
and combined with the rotation iteration immedialtely
after its corresponding si has been determined, that is
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Similarly, there are 0.8n shift-and-add operations for
this CORDIC operations.

On the other hand, in average, the hybrid radix-2 and
radix-4 algortihms in [5] and [10] needs n/2 radix-2 itera-
tions, (n/4) ×4/5 radix-4 iterations and n/4 iterations for
scale factor compensation. These amount to 0.95n shift-
and-add operations for those two algorithms. Note that the
algorithm in [10] is based on slower non-redundant addi-
tions.

The double rotation method [4] needs 2.25n basic
steps where 2n steps for rotations and 0.25n for scale fac-
tor compensation. The branch CORDIC algorithm [6]
needs 1.25n basic steps where n steps for rotations and
0.25n for scale factor compensation. However, this algo-
rithm needs two copies of CORDIC operated in parallel.
Hence, in fact this algorithm needs 2.5n basic steps.

Table 1 summaries the comparison results. In the table,
all the algorithms are assumed realized with unfolded
(sequential) hardwares, which mainly consist of required
barrel shifters, adders and ROM tables excluding other
minor components. As shown, the new radix-4 redundant
CORDIC have the best performance. The comparison
statistic for all existing vectoring-mode CORDICs have the
similar performance results as the rotation mode.

5. CONCLUSION

The new CORDIC algorithm achieves the best per-
formance among all the existing algorithms in terms of
iteration number and hardware complexity. The algorithm
can be applied to the computation of hyperbolic functions
as well. Moreover, the new algorithm includes a ROM
table of ln( )1 2 2 1+ − −si

i  which can be utilized to compute

logarithm and exponential functions, and in turns the hy-
perbolic functions by using the well-known CCM algo-
rithm. Doing this way, no scale factor compensation is
required. As a result, a unified algorithm for the computa-
tion of a broad set of elementary functions can be obtained,
which is under further investigation.
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APPENDIX A
Derivation of the radix-4 on-line decomposition algo-
rithm for variable scale factor
The decisoin of si=k should make Wi+1  remain bounded

in [L-2,U2] whenever Wi is in the interval [Lk,Uk]. Then

the following equations have to be satisfied:
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By substituting k=-2, -1, 0, 1, 2 successively into the above
equations, the exact bounds for i≥2 are found to be:
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Similarly,
L− =≤ −2 4 3/ , L− =≤ −1 5 6/ , L0 1 3=≤ − /

L1 1 6=≤ / , L2 2 3=≤ /
It can be shown that the overlap intervals [L2,U1], [L1,U0],

[L0,U-1] exist for all i, while [L-1,U-2] exists for i≥2. With

the overlap regions, a simple selection rule for si can be

obtained as shown in the second section. The term

ln(1+si2
-2i-1) doesn’t exist when i=0 and s0= -2. To solve

this problem and ensure convergence, we introduce the
initial steps as follows,
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APPENDIX B
Derivation of selection rule for rotation direction of the
radix-4 CORDIC in rotation mode
Similar to the on-line scale factor decompostion algorithm,
the decision rules for rotation direction is to make Ri+1
still bounded if Ri is bounded in the interval [Lk,Uk].

Therefore, Lk and Uk can be found from U2=4(Uk-22itan-

1k2-2i-1) and L-2=4(Lk-22itan-1k2-2i-1). And the smallest

(largest) values of Uk (Lk) can be found by letting i=0.

Specifically,

U L2 2 3
= − ≥−

π , U L1 1 0 7254= − ≥− . ,

U L0 0 12
= − =≥ π ,U L− = − ≥ −1 1 0 2019. ,

U L− −= − ≥ −2 2 0 5235. .
 

From the overlap intervals of

[L2,U1], [L1,U0],  [L0,U-1] and [L-1,U-2], a simple deci-

sion rule for δi can be deduced as shown in the second

section.

Table 1. Comparisons of the rotation-mode redundant CORDIC algorithms.

Algorithm
New

CORDIC
Lee & Tang’s
CORDIC [5]

Rodrigues’ CORDIC
[10]

Branch CORDIC
[6]

Double rotation
CORDIC [4]

Area ∼∼A ∼A ∼A ∼2A ∼A
No. of Shift-
&-add steps 0.8n 0.95n 0.95n 1.25n 2.25n


