A RADIX-4 REDUNDANT CORDIC ALGORITHM WITH FAST ON-LINE
VARIABLE SCALE FACTOR COMPENSATION

Chieh-Chih Li Sau-Gee Chen
Opto-Electronics & Systems Laboratories Department of Electronics Engineering
Industrial Technology Research Institute National Chiao Tung University

Hsinchu, Taiwan, ROC Hsinchu, Taiwan, ROC

E-mail: sgchen@cc.nctu.edu.tw

ABSTRACT fast decision of rotation direction with only a few most
hi K af di dund C al significant digits (MSDs) ofhe related parameters [3-8];

ith In b r|1$ qut;la aslt r? Ix-4 reaun antdCOrI]:{DII a.grc])— (3) skipping unnecessary rotations; (4) recoding rotation
.r't m with varia € scale actor is propose T € agor|.t m angle for saving rotation iterations; and (5) applying radix-
includes an on-line scale_ factor de_composmon algor|thm4 rotation scheme [5,10,13]. The the 2nd to 4th techniques
that transforfm; th? cotr;r)f;illcaéed d\(/jarlable §cale fagtc(;jr Into ?esult in variable scale factors. Variable scale factors have
seéquence ot simple shif-and-ag qperauons and coes e trouble of complicated scale factor computation fol-
variable scale factor compensation in the same fashion. Og, .o by penalty compensation [7,8]. Due to the consider-
the %ther hl".’mdd th.ehon—h.ne Idecor;r?osnfn dalgonthrr;] Itself aple overhead generated by variable scale factor, the exist-
can be reallze. hW'tha S|rr]npe ar|1| ast e;)r wgre.. The ne"Yng radix-4 CORDIC algorithms resort to constant scale
CORDIC algorithm has the smallest numbeOdinitera- ¢, 101 approach [5,10,13]. However, these constant scale-
tions among all the CORDIC algorithms, which requires 1, coRDICs are not pure radix-4 algorithms. In fact,
only about two-third rotation number that of the existing they are all hybrid radix-2 and radix-4 algorithms. As a
best (hybrid radix-2 and_ rad|x—4)_ redundant algonthms. result, all these approaches have minorly reduced iteration
Therefore, the new algorithm achieves fast rotation itera-, imbers. at the cost of control overheads Ideally, a pure
tions, high-speed and low-overhead scale factor compensg, gy, 4 algorithm would achieve the best performance.
tions, which are hard to attain simultaneously for the exist- To alleviate the mentioned disadvantages related to
ing algorithms. The on-line scale factor compensation C@Myrior arts, a pure fast radix-4 redundant CORDIC algo-
peh also applied to the existing on-line CORDIC algo- rithm with variable scale factor is proposed. The algorithm
rthms. includes an on-line variable scale factor decomposition

algorithm that transforms the complicated variable scale
1. INTRODUCTION n/2

| 2.-4i-2, . :
CORDIC [1,2] algorithm is an efficient scheme for factor iDo/l (1+5i 2 ) into a sequence of simple

computing elementary functions especially for the trigo- n/2 )
nometric functions. Since the algorithm can be realized asshift-and-add operations off] 1¢s; 2_2'_1
a sequence of shift-and-add operations followed by a scale =0 !
factor compensation operation, it is very suited for VLSI line fashion, wherej, s {-2,-1,0,1,2}. Heres; only de-
imp|ementati0n and W|de|y applled to DSP applications. pends an_ Both q andq can be eas”y determined by

Most of the CORDIC algorithms assume a COnst"’mtestimating their corresponding intermediate variables with

scale factor for the ease of scale factor compensat|or_1Very short wordlength. In all, the new algorithm has the

H_owever, they have to ?'thef do an accurate but SI.OW qu"smallest number OrBof shift-and-add steps among all the
sion operation for rotation direction or do rough direction

decision at the expense of extra compensation operationgORDIC algorithms. Therefore, the new CORDIC algo-
[4], [6]. In addition, they have to rotate even when the ithm achieves fast rotation iterations, high-speed and low-

rotation anale has been converaed. To speedu CORDlé)verhead scale factor compensations, which are hard to
. 9 . rgea. P P ] attain simultaneously for the existing algorithms. The on-
operations, the following techniques are widely used: (1)

. i line scale factor compensation can be also applied to the
applying carry-free redundant addition scheme [3-8]; (2) existing on-line CORI;IC algorithms. PP

in an on-



2. THE NEW RADIX-4 CORDIC ALGORITHM
FOR ROTATION MODE

Here, the new redundant CORDIC algorithm to be
proposed is based on the fast signed-digit addition (SDA)
[12]. The proposed radix-4 rotation mode algorithm for
initial vector of Xg,Yg] to be rotated by an angle 8§ is

given as follows:
for i=0 ton/2+1
Xir 12X+ G221y, Yie 1=Y-027 21,
R+ 1=4(R-22tarr152°2-1) =22(+1)z, 4 »
The final scale factor is
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A simple selection rules (derived in Appendix B) 8pris
as follows,

if 5, =0
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where Rj consists of the three most-significant fractional
digits of R;. On the other hand, a simple selection rule

(derived in Appendix A) fors, can be obtained by defin-
ing the following iterative operations:

2i+1 2 -4(i+)), 2 -
W, = 4w - 22 s 62 2740y 2% i s 2

A =Alrs2)
where Wp = -2 1+ 5527%), 8, ({Q+13 ,Ag=1,

2i—1)] ,

K-1= Amp+10 for n-bit precision.
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if -1/4<Wij <1/4
N
if -13/16sWj <-1/4
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if Wi <-13/ 16
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where wj is the five most-significant fractional digits of
W;. The scale factor compensation can then be combined

with rotation iteration or executed after all the rotation
iterations are finished.

3. THE NEW RADIX-4 CORDIC ALGORITHM
FOR VECTORING MODE

Since the iterated vectors are scaled in magnitude in
each iteration and can only be tested after rotation, the
decision operations are slower and more complicated than
that of the rotation mode. For this reason, the proposed
new vectoring mode algorithm is still a hybrid radix-2 and
radix-4 one. However, the new algorithm reduces radix-2
iterations to four which is much smaller than the existing
n/2. Derivation of the new algorithm is more involved than
and similar to the rotation mode algortihm.

The new algorithm starts with four radix-2 iterations
based on the Ercegovac and Lang’s algorithm [7], fol-
lowed by 6-4)/2+1 radix-4 iterations based on a fixed
selection rule as follows, fex0,1,...,6-4)/2

N
it Wi >3X4/2
N

if 1/2X4 < Wi* <3X4/2

N

N N

RO QP

otherwise

N

if —3X4/2SWi* <-X4/2

N N

OEnO
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AN AN

it Wi~ <-3X4/2
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W =4 —0; %) =4
xSl gk iy
Zi+1_Zi +tan 6i2

where w and x4 are theé and5 most significant frac-
[

tional digits of WI* and X4 respectiviey, and



XB = X, YS =Y, Z*0: Zi Xg Yy Z0€ the results On the ot.her hgnd, in average, the hybri_d ra(_jix-2 and
. . . } ] radix-4 algortihms in [5] and [10] need$2 radix-2 itera-
from the first 4 radix-2 iterations. The final result tions f/4) x4/5 radix-4 iterations ana/4 iterations for

* = -k |x2 * =tarrl le factor compensation. Th moun®.&5n shift-
X KiR= K S tanXg/Yp. scale factor compensatio ese amou
(n=4)/2+1 %0 %2 (n-d)/2+1 and-add operations for those two algorithms. Note that the

The resulted variable scale factor decomposition can bealgorithm in [10] is based on slower non-redundant addi-
performed similarly to the rotation mode on-line decompo- tjgns.

sition algorithm. The double rotation method [4] needs A 25asic

4. PERFORMANCE COMPARISONS steps where 2steps for rotations and 0:2%or scale fac-
tor compensation. The branch CORDIC algorithm [6]

To compare different redundant CORDICs for rotation needs 1.25 basic steps where steps for rotations and
mode, we assume that a basic iteration step consists of @25 for scale factor compensation. However, this algo-
shift operation and a 4-2 SDA. Combined with CORDIC rithm needs two copies of CORDIC operated in parallel.
rotation iterations, the new scale factor decompositionHence, in fact this algorithm nee@$nbasic steps.
algortithm can compensate the final results in two different  Taple 1 summaries the comparison results. In the table,
schemes: all the algorithms are assumed realized with unfolded

* Scheme-i The n/2 additional shift-and-add compen- (Sequential) hardwares, which mainly consist of required
sation Operations are performed r|ght after allrife barrel Shiﬁers, adders and ROM tables EXC|udiI’lg other

redundant CORDIC iterations have been done, namelyminor components. As shown, the new radix-4 redundant

X, =(1+§22 X, Y, =(1+s2% Y)Y CORDIC have th best pgrformance. The comparison
X statistic for all existing vectoring-mode CORDICs have the

where X; = X, andY] = Y, Xp2andYpj2 are  gimijar performance results as the rotation mode.

the CORDIC rotation results before scale factor com-

pensation. The final compensated results are 5. CONCLUSION

X;,zﬂ andY,:,zﬂ. Consequently, both rotation and The new CORDIC algorithm achieves the best per-

. . : formance among all the existing algorithms in terms of

compensation operations neef? shift-and-add op- . . ; ;

erations. However. the probability of non iteration number and hardware complexity. The algorithm
1ons. W_ ver, P ||.y 2600 S can be applied to the computation of hyperbolic functions

({-2,-1,0,1,2} is 4/5. As a result, in average there are as well. Moreover, the new algorithm includes a ROM

(n/2)x2x4/5=0.8nshift-and-add operations. table of In(1+s 22™*) which can be utilized to compute

* :rfgecrg;tl)linlzezc\?vifr? I:r]]%epoigttlig: Iittirrzttligz Iii]ﬁqeézjci’;?;d logarithm and exponential functions, and in turns the hy-
after its corresponding has been determined, that is g perbolic fgnctions by using the well-known CCM glgoj

' rithm. Doing this way, no scale factor compensation is

X, =(1+§277)(X =5,22Y)), required. As a result, a unified algorithm for the computa-

Y, =@+ 527 (Y+5 220 X. tion of a broad set of elementary functions can be obtained,

hich i der further i tigation.
Similarly, there ared.8n shift-and-add operations for Which IS Under further invesfigation

this CORDIC operations.
989-995, Sept. 1991.
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2i _ _
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In(1+32'2i'1) doesn't exist wheir0 andsg= -2. To solve

this problem and ensure convergence, we introduce the

initial steps as follows,
. O 1 if 0, =0
14g 27271 o 0o~
0 %1— 27°) ifoy#0

APPENDIX B
Derivation of selection rule for rotation direction of the
radix-4 CORDIC in rotation mode
Similar to the on-line scale factor decompostion algorithm,
the decision rules for rotation direction is to makeq

still bounded ifR; is bounded in the interval |[,U,].
Therefore L andUy can be found fromJ2:4(Uk-22itarf
1k2'2i'1) and L_2:4(Lk-22itarf 1k2‘2i'1). And the smallest
(largest) values ol (Ly) can be found by letting=0.
Specifically,

U,=-L, zg, U, =-L_, >0.7254

’;,u_l =-L, >-0.2019,

Uy =-L,==
U, =-L,>-05235 From the overlap intervals of
[Lo,Uql, [L1.Ugl, [LoU-1] and [L_q,U_o], a simple deci-
sion rule forg can be deduced as shown in the second
section.

obtained as shown in the second section. The term
Table 1. Comparisons of the rotation-mode redundant CORDIC algorithms.

New Lee & Tang's Rodrigues’ CORDIC | Branch CORDIC | Double rotatior]
Algorithm CORDIC CORDIC [5] [10] [6] CORDIC [4]
Area [A [A [A [PA [A
No. of Shift-
&-add steps 0.8n 0.95n 0.95n 1.25n 2.25n




